Adrian Melissinos

From the recently observed propagation of gravitational waves through space-time an upper limit can be deduced for the stiffness of space-time through which the gravitational wave propagates. The upper limit is extremely weak, implying that the stiffness of space-time is at least 14 orders of magnitude weaker than that of jello.

Read more at https://arxiv.org/pdf/1806.01133.pdf

# Asides

# Temporal relationalism

**Lee Smolin**

Because of the non-locality of quantum entanglement, realist approaches to completing quantum mechanics have implications for our conception of space. Quantum gravity also is expected to predict phenomena in which the locality of classical spacetime is modified or disordered. It is then possible that the right quantum theory of gravity will also be a completion of quantum mechanics in which the foundational puzzles in both are addressed together. I review here the results of a program, developed with Roberto Mangabeira Unger, Marina Cortes and other collaborators, which aims to do just that. The results so far include energetic causal set models, time asymmetric extensions of general relativity and relational hidden variables theories, including real ensemble approaches to quantum mechanics. These models share two assumptions: that physics is relational and that time and causality are fundamental.

Read more at https://arxiv.org/pdf/1805.12468.pdf

# A Mini-Introduction To Information Theory

**Edward Witten**

This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case.

Read more at https://arxiv.org/pdf/1805.11965.pdf

# Physics Needs Philosophy. Philosophy Needs Physics

**Carlo Rovelli**

Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method.

Read more at https://arxiv.org/ftp/arxiv/papers/1805/1805.10602.pdf

# Emergence of Benford’s Law in Classical Music

**Azar Khosravani, Constantin Rasinariu**

We analyzed a large selection of classical musical pieces composed by Bach, Beethoven, Mozart, Schubert and Tchaikovsky, and found a surprising connection with mathematics. For each composer, we extracted the time intervals each note was played in each piece and found that the corresponding data sets are Benford distributed. Remarkably, the logarithmic distribution is not only present for the leading digits, but for all digits.

Read more at https://arxiv.org/pdf/1805.06506.pdf

# Gravitational Waves: A New Astronomy

**Luc Blanchet**

Contemporary astronomy is undergoing a revolution, perhaps even more important than that which took place with the advent of radioastronomy in the 1960s, and then the opening of the sky to observations in the other electromagnetic wavelengths. The gravitational wave detectors of the LIGO/Virgo collaboration have observed since 2015 the signals emitted during the collision and merger of binary systems of massive black holes at a large astronomical distance. This major discovery opens the way to the new astronomy of gravitational waves, drastically different from the traditional astronomy based on electromagnetic waves. More recently, in 2017, the detection of gravitational waves emitted by the inspiral and merger of a binary system of neutron stars has been followed by electromagnetic signals observed by the γ and X satellites, and by optical telescopes. A harvest of discoveries has been possible thanks to the multi-messenger astronomy, which combines the information from the gravitational wave with that from electromagnetic waves. Another important aspect of the new gravitational astronomy concerns fundamental physics, with the tests of general relativity and alternative theories of gravitation, as well as the standard model of cosmology.

*Read more at https://arxiv.org/pdf/1805.08563.pdf*

# Lets Talk About Black Hole Singularities

**Abraham Loeb**

Does the collision of black hole singularities imprint an observable quantum signature on the resulting gravitational wave signal?

The singularities at the centers of astrophysical black holes mark the breakdown of Einstein’s theory of gravity, General Relativity. They represent the only breakdown sites accessible to experimentalists, since the other known singularity, the Big Bang,is believed to be invisible due to the vast expansion that occurred afterwards during cosmic inflation…

Read more https://arxiv.org/ftp/arxiv/papers/1805/1805.05865.pdf