Posts Tagged ‘XMM-Newton

An Exploded Star’s Remains and Its Murky Environment

leave a comment »

Supernova remnant W44 is the focus of this new image created by combining data from ESA’s Herschel and XMM-Newton space observatories. W44 is the vast purple sphere that dominates the left hand side of this image, and measures about 100 light-years across.

W44 is located around 10,000 light-years away, within a forest of dense star-forming clouds in the constellation of Aquila, the Eagle. It is one of the best examples of a supernova remnant interacting with its parent cloud.

The supernova remnant is the result of massive star that reached the end of its life and expelled its outer layers in a dramatic explosion. All that remains of the stellar behemoth is the spinning core of a neutron star, or pulsar.

Identified as PSR B1853+01, the pulsar is the bright point to the top left in W44, colored light blue in this image. It is thought to be around 20,000 years old. Like other pulsars, as it rapidly rotates, it sweeps out a wind of highly energetic particles and beams of light ranging from radio to X-ray energies. The center of the supernova remnant is also bright in X-rays, coming from the hot gas that fills the shell at temperatures of several million degrees.

Dense knots of high-energy emission reflect regions where heavier elements are more commonly found. At the cooler edge of the cavity, gas is swept up as the supernova remnant propagates through space.

At the top right of the expanding shell, there is a smaller cavity, with the shock from the supernova remnant impacting the bight arc-shaped feature. This region is filled with hot gas that has been ionized by the intense ultraviolet radiation from embedded young massive stars.

Herschel’s infrared eyes seek out regions of gently heated gas and dust further from W44, where new stars are congregating. Examples include the arrowhead-shaped star-formation region to the right of W44, which appears to point to another trio of intricate clouds further to the right and above.

Herschel’s three-color infrared view comprises data from the Photodetecting Array Camera and Spectrometer (PACS) at 70 and 160 microns, and Herschel’s spectral and photometric imaging receiver (SPIRE) instrument at 250 microns.

X-ray data from XMM-Newton for W44 has been added in light and dark blue to represent high- and low-energy X-ray emission, respectively.

The field of view is about one-degree across. North is towards the bottom left of the image; east is to the top right.
Read more:

Written by physicsgg

November 15, 2012 at 1:40 pm

Cosmic Bubble

leave a comment »

Like a set of cosmic lips, the pink Wolf-Rayet star HD 50896, 5,000 light-years from Earth, has blown an enormous space bubble (seen in a recent picture) that stretches a staggering 60 light-years across. This feature in the constellation Canis Major has been said to resemble a dog, with a protruding “ear” (upper left), and a “snout” below a pair of piercing “eyes” that includes the pink star (left) and a yellow counterpart.

In this composite image, X-ray data from XMM-Newton’s EPIC camera appear as blue, while visible light from the Curtis-Schmidt telescope at the Cerro Tololo Inter-American Observatory is tinted red and green.

Bubbles like S 308 are somehow produced when hot, huge Wolf-Rayet stars—each about 40 times more massive than the sun—emit a shock wave of materials and strong stellar winds. In the future the bubble will pop, and the star will end its days with a supernova bang.
Read more:

Written by physicsgg

November 10, 2012 at 3:46 pm


Tagged with ,

Ultra-fast Outflows Help Monster Black Holes Shape Their Galaxies

leave a comment »

The supermassive black holes in active galaxies can produce narrow particle jets (orange) and wider streams of gas (blue-gray) known as ultra-fast outflows, which are powerful enough to regulate both star formation in the wider galaxy and the growth of the black hole. Inset: A close-up of the black hole and its accretion disk. (Artist concept credit: ESA/AOES Medialab)

curious correlation between the mass of a galaxy’s central black hole and the velocity of stars in a vast, roughly spherical structure known as its bulge has puzzled astronomers for years. An international team led by Francesco Tombesi at NASA’s Goddard Space Flight Center in Greenbelt, Md., now has identified a new type of black-hole-driven outflow that appears to be both powerful enough and common enough to explain this link.

Most big galaxies contain a central black hole weighing millions of times the sun’s mass, but galaxies hosting more massive black holes also possess bulges that contain, on average, faster-moving stars. This link suggested some sort of feedback mechanism between a galaxy’s black hole and its star-formation processes. Yet there was no adequate explanation for how a monster black hole’s activity, which strongly affects a region several times larger than our solar system, could influence a galaxy’s bulge, which encompasses regions roughly a million times larger.

“This was a real conundrum. Everything was pointing to supermassive black holes as somehow driving this connection, but only now are we beginning to understand how they do it,” Tombesi said.
Active black holes acquire their power by gradually accreting — or “feeding” on — million-degree gas stored in a vast surrounding disk. This hot disk lies within a corona of energetic particles, and while both are strong X-ray sources, this emission cannot account for galaxy-wide properties. Near the inner edge of the disk, a fraction of the matter orbiting a black hole often is redirected into an outward particle jet. Although these jets can hurl matter at half the speed of light, computer simulations show that they remain narrow and deposit most of their energy far beyond the galaxy’s star-forming regions.

Astronomers suspected they were missing something. Over the last decade, evidence for a new type of black-hole-driven outflow has emerged. At the centers of some active galaxies, X-ray observations at wavelengths corresponding to those of fluorescent iron show that this radiation is being absorbed. This means that clouds of cooler gas must lie in front of the X-ray source. What’s more, these absorbed spectral lines are displaced from their normal positions to shorter wavelengths — that is, blueshifted, which indicates that the clouds are moving toward us.

In two previously published studies, Tombesi and his colleagues showed that these clouds represented a distinct type of outflow. In the latest study, which appears in the Feb. 27 issue of Monthly Notices of the Royal Astronomical Society, the researchers targeted 42 nearby active galaxies using the European Space Agency’s XMM-Newton satellite to hone in on the location and properties of these so-called “ultra-fast outflows” — or UFOs, for short. The galaxies, which were selected from the All-Sky Slew Survey Catalog produced by NASA’s Rossi X-ray Timing Explorer satellite, were all located less than 1.3 billion light-years away.

The outflows turned up in 40 percent of the sample, which suggests that they’re common features of black-hole-powered galaxies. On average, the distance between the clouds and the central black hole is less than one-tenth of a light-year. Their average velocity is about 14 percent the speed of light, or about 94 million mph, and the team estimates that the amount of matter required to sustain the outflow is close to one solar mass per year — comparable to the accretion rate of these black holes…..
Read moe:

Written by physicsgg

February 28, 2012 at 1:32 pm


Tagged with ,

Celestial Bauble Intrigues Astronomers

leave a comment »

 With the holiday season in full swing, a new image from an assembly of telescopes has revealed an unusual cosmic ornament. Data from NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton have been combined to discover a young pulsar in the remains of a supernova located in the Small Magellanic Cloud, or SMC. This would be the first definite time a pulsar, a spinning, ultra-dense star, has been found in a supernova remnant in the SMC, a small satellite galaxy to the Milky Way.

In this composite image, X-rays from Chandra and XMM-Newton have been colored blue and optical data from the Cerro Tololo Inter-American Observatory in Chile are colored red and green. The pulsar, known as SXP 1062, is the bright white source located on the right-hand side of the image in the middle of the diffuse blue emission inside a red shell. The diffuse X-rays and optical shell are both evidence for a supernova remnant surrounding the pulsar. The optical data also displays spectacular formations of gas and dust in a star-forming region on the left side of the image. A comparison of the Chandra image with optical images shows that the pulsar has a hot, massive companion.

Astronomers are interested in SXP 1062 because the Chandra and XMM-Newton data show that it is rotating unusually slowly — about once every 18 minutes. (In contrast, some pulsars are found to revolve multiple times per second, including most newly born pulsars.) This relatively leisurely pace of SXP 1062 makes it one of the slowest rotating X-ray pulsars in the SMC.

Two different teams of scientists have estimated that the supernova remnant around SXP 1062 is between 10,000 and 40,000 years old, as it appears in the image. This means that the pulsar is very young, from an astronomical perspective, since it was presumably formed in the same explosion that produced the supernova remnant. Therefore, assuming that it was born with rapid spin, it is a mystery why SXP 1062 has been able to slow down by so much, so quickly. Work has already begun on theoretical models to understand the evolution of this unusual object.

Credits: NASA/CXC/Univ. of Potsdam/L. Oskinova et al.
Read more:

Written by physicsgg

December 21, 2011 at 1:10 pm


Tagged with , , ,

NASA Telescopes Help Solve Ancient Supernova Mystery

leave a comment »

This image combines data from four different space telescopes to create a multi-wavelength view of all that remains of the oldest documented example of a supernova, called RCW 86

A mystery that began nearly 2,000 years ago, when Chinese astronomers witnessed what would turn out to be an exploding star in the sky, has been solved. New infrared observations from NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer, or WISE, reveal how the first supernova ever recorded occurred and how its shattered remains ultimately spread out to great distances.

The findings show that the stellar explosion took place in a hollowed-out cavity, allowing material expelled by the star to travel much faster and farther than it would have otherwise.

“This supernova remnant got really big, really fast,” said Brian J. Williams, an astronomer at North Carolina State University in Raleigh. Williams is lead author of a new study detailing the findings online in the Astrophysical Journal. “It’s two to three times bigger than we would expect for a supernova that was witnessed exploding nearly 2,000 years ago. Now, we’ve been able to finally pinpoint the cause.”

A new image of the supernova, known as RCW 86, is online at .

In 185 A.D., Chinese astronomers noted a “guest star” that mysteriously appeared in the sky and stayed for about 8 months. By the 1960s, scientists had determined that the mysterious object was the first documented supernova. Later, they pinpointed RCW 86 as a supernova remnant located about 8,000 light-years away. But a puzzle persisted. The star’s spherical remains are larger than expected. If they could be seen in the sky today in infrared light, they’d take up more space than our full moon.

The solution arrived through new infrared observations made with Spitzer and WISE, and previous data from NASA’s Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Observatory.

The findings reveal that the event is a “Type Ia” supernova, created by the relatively peaceful death of a star like our sun, which then shrank into a dense star called a white dwarf. The white dwarf is thought to have later blown up in a supernova after siphoning matter, or fuel, from a nearby star.

“A white dwarf is like a smoking cinder from a burnt-out fire,” Williams said. “If you pour gasoline on it, it will explode.”

The observations also show for the first time that a white dwarf can create a cavity around it before blowing up in a Type Ia event. A cavity would explain why the remains of RCW 86 are so big. When the explosion occurred, the ejected material would have traveled unimpeded by gas and dust and spread out quickly.

Spitzer and WISE allowed the team to measure the temperature of the dust making up the RCW 86 remnant at about minus 325 degrees Fahrenheit, or minus 200 degrees Celsius. They then calculated how much gas must be present within the remnant to heat the dust to those temperatures. The results point to a low-density environment for much of the life of the remnant, essentially a cavity.

Scientists initially suspected that RCW 86 was the result of a core-collapse supernova, the most powerful type of stellar blast. They had seen hints of a cavity around the remnant, and, at that time, such cavities were only associated with core-collapse supernovae. In those events, massive stars blow material away from them before they blow up, carving out holes around them.

But other evidence argued against a core-collapse supernova. X-ray data from Chandra and XMM-Newton indicated that the object consisted of high amounts of iron, a telltale sign of a Type Ia blast. Together with the infrared observations, a picture of a Type Ia explosion into a cavity emerged.

“Modern astronomers unveiled one secret of a two-millennia-old cosmic mystery only to reveal another,” said Bill Danchi, Spitzer and WISE program scientist at NASA Headquarters in Washington. “Now, with multiple observatories extending our senses in space, we can fully appreciate the remarkable physics behind this star’s death throes, yet still be as in awe of the cosmos as the ancient astronomers.”

NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. For more information about Spitzer, visit and

Written by physicsgg

October 24, 2011 at 7:06 pm