Quantum Computing as a High School Module


Anastasia Perry, Ranbel Sun, Ciaran Hughes, Joshua Isaacson, Jessica Turner
Quantum computing is a growing field at the intersection of physics and computer science. This module introduces three of the key principles that govern how quantum computers work: superposition, quantum measurement, and entanglement. The goal of this module is to bridge the gap between popular science articles and advanced undergraduate texts by making some of the more technical aspects accessible to motivated high school students. Problem sets and simulation based labs of various levels are included to reinforce the conceptual ideas described in the text. This is intended as a one week course for high school students between the ages of 15-18 years. The course begins by introducing basic concepts in quantum mechanics which are needed to understand quantum computing.
Read more at https://arxiv.org/pdf/1905.00282.pdf

Video

Quantum Computing and the Entanglement Frontier


John Preskill, CalTech
The quantum laws governing atoms and other tiny objects seem to defy common sense, and information encoded in quantum systems has weird properties that baffle our feeble human minds. John Preskill will explain why he loves quantum entanglement, the elusive feature making quantum information fundamentally different from information in the macroscopic world. By exploiting quantum entanglement, quantum computers should be able to solve otherwise intractable problems, with far-reaching applications to cryptology, materials, and fundamental physical science. Preskill is less weird than a quantum computer, and easier to understand.

Aside

Quantum factorization of 44929 with only 4 qubits

Nikesh S. Dattani, Nathaniel Bryans
The largest number factored on a quantum device reported until now was 143.
That quantum computation, which used only 4 qubits, actually also factored much larger numbers such as 3599, 13081, and 44929, without the awareness of the authors of that work.
Furthermore, unlike the implementations of Shor’s algorithm performed thus far, these 4-qubit factorizations do not need to use prior knowledge of the answer. However, because they only use 4 qubits, these factorizations can also be performed trivially on classical computers. We discover a class of numbers for which the power of quantum information actually comes into play.
We then demonstrate a 3-qubit factorization of 175, which would be the first quantum factorization of a triprime.
Read more at http://arxiv.org/pdf/1411.6758v2.pdf

Aside

Experimental Realization of Quantum Artificial Intelligence

quantum11Li Zhaokai, Liu Xiaomei, Xu Nanyang, Du jiangfeng
Machines are possible to have some artificial intelligence like human beings owing to particular algorithms or software.
Such machines could learn knowledge from what people taught them and do works according to the knowledge.
In practical learning cases, the data is often extremely complicated and large, thus classical learning machines often need huge computational resources. Quantum machine learning algorithm, on the other hand, could be exponentially faster than classical machines using quantum parallelism.
Here, we demonstrate a quantum machine learning algorithm on a four-qubit NMR test bench to solve an optical character recognition problem, also known as the handwriting recognition.
The quantum machine learns standard character fonts and then recognize handwritten characters from a set with two candidates.
To our best knowledge, this is the first artificial intelligence realized on a quantum processor.
Due to the widespreading importance of artificial intelligence and its tremendous consuming of computational resources, quantum speedup would be extremely attractive against the challenges from the Big Data…..
Read more at http://arxiv.org/pdf/1410.1054v1.pdf

Read also: First Demonstration Of Artificial Intelligence On A Quantum Computer

Quantum memory ‘world record’ smashed

Quantum systems are notoriously fickle to measure and manipulate

Quantum systems are notoriously fickle to measure and manipulate

A fragile quantum memory state has been held stable at room temperature for a “world record” 39 minutes – overcoming a key barrier to ultrafast computers.

“Qubits” of information encoded in a silicon system persisted for almost 100 times longer than ever before.

Quantum systems are notoriously fickle to measure and manipulate, but if harnessed could transform computing.

The new benchmark was set by an international team led by Mike Thewalt of Simon Fraser University, Canada.

“This opens the possibility of truly long-term storage of quantum information at room temperature,” said Prof Thewalt, whose achievement is detailed in the journal Science.

In conventional computers, “bits” of data are stored as a string of 1s and 0s.

But in a quantum system, “qubits” are stored in a so-called “superposition state” in which they can be both 1s and 0 at the same time – enabling them to perform multiple calculations simultaneously.

The trouble with qubits is their instability – typical devices “forget” their memories in less than a second.

There is no Guinness Book of quantum records. But unofficially, the previous best for a solid state system was 25 seconds at room temperature, or three minutes under cryogenic conditions.

In this new experiment, scientists encoded information into the nuclei of phosphorus atoms held in a sliver of purified silicon.

Magnetic field pulses were used to tilt the spin of the nuclei and create superposition states – the qubits of memory.

The team prepared the sample at -269C, close to absolute zero – the lowest temperature possible…..

……….. Read more at http://www.bbc.co.uk/news/science-environment-24934786

An infallible quantum measurement

The new method allows for reliable statements about the entanglement in a system. Credit: Uni Innsbruck/Ritsch

The new method allows for reliable statements about the entanglement in a system. Credit: Uni Innsbruck/Ritsch

Entanglement is a key resource for upcoming quantum computers and simulators. Now, physicists in Innsbruck and Geneva realized a new, reliable method to verify entanglement in the laboratory using a minimal number of assumptions about the system and measuring devices. Hence, this method witnesses the presence of useful entanglement.

Quantum computation, quantum communication and quantum cryptography often require entanglement. For many of these upcoming quantum technologies, entanglement – this hard to grasp, counter-intuitive aspect in the quantum world – is a key ingredient. Therefore, experimental physicists often need to verify entanglement in their systems. “Two years ago, we managed to verify entanglement between up to 14 ions”, explains Thomas Monz. He works in the group of Rainer Blatt at the Institute for Experimental Physics, University Innsbruck. This team is still holding the world-record for the largest number of entangled particles. “In order to verify the entanglement, we had to make some, experimentally calibrated, assumptions. However, assumptions, for instance about the number of dimensions of the system or a decent calibration, make any subsequently derived statements vulnerable”, explains Monz. Together with Julio Barreiro, who recently moved on the Max Planck Institute of Quantum Optics in Garching, and Jean-Daniel Bancal from the group of Nicolas Gisin at the University of Geneva, now at the Center for Quantum Technologies in Singapore, the physicists derived and implemented a new method to verify entanglement between several objects.
Finding correlations
The presented device-independent method is based on a single assumption: “We only have to make sure that we always apply the same set of operations on the quantum objects, and that the operations are independent of each other”, explains Julio Barreiro. “However, which operations we apply in detail – this is something we do not need to know.” This approach – called Device Independent – allows them to get around several potential sources of error, and subsequently wrong interpretations of the results. “In the end, we investigate the correlations between the settings and the obtained results. Once the correlations exceed a certain threshold, we know that the objects are entangled.” For the experimentally hardly avoidable crosstalk of operations applied to levitating calcium ions in the vacuum chamber in Innsbruck, the Swiss theorist Jean-Daniel Bancal managed to adapt the threshold according to a worst-case scenario. “When this higher threshold is breached, we can claim entanglement in the system with high confidence”, states Bancal.
Assumptions as Achilles heel
For physicists, such procedures that are based on very few assumptions are highly interesting. By being basically independent of the system, they provide high confidence and strengthen the results of experimentalists. “Assumptions are always the Achilles heel – be that for lab data or theory work”, stresses Thomas Monz. “We managed to reduce the number of assumption to verify entanglement to a minimum. Our method thus allows for reliable statements about the entanglement in a system.” In the actual implementation, the physicists in Innsbruck could verify entanglement of up to 6 ions. This new method can also be applied for larger systems. The technical demands, however, also increase accordingly.

Read more at: http://phys.org/news/2013-08-infallible-quantum.html#jCp

Quantum computer solves simple linear equations

Conceptual illustration of photon-based qubits. (Courtesy: iStockphoto/Henrik Jonsson)

Conceptual illustration of photon-based qubits. (Courtesy: iStockphoto/Henrik Jonsson)

Experimental Quantum Computing to Solve Systems of Linear Equations
X.-D. Cai et al
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log⁡(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
Read more: http://prl.aps.org/abstract/PRL/v110/i23/e230501
Read also: http://physicsworld.com/cws/article/news/2013/jun/12/quantum-computer-solves-simple-linear-equations