Aside

Temporal relationalism

Lee Smolin
Because of the non-locality of quantum entanglement, realist approaches to completing quantum mechanics have implications for our conception of space. Quantum gravity also is expected to predict phenomena in which the locality of classical spacetime is modified or disordered. It is then possible that the right quantum theory of gravity will also be a completion of quantum mechanics in which the foundational puzzles in both are addressed together. I review here the results of a program, developed with Roberto Mangabeira Unger, Marina Cortes and other collaborators, which aims to do just that. The results so far include energetic causal set models, time asymmetric extensions of general relativity and relational hidden variables theories, including real ensemble approaches to quantum mechanics. These models share two assumptions: that physics is relational and that time and causality are fundamental.
Read more at https://arxiv.org/pdf/1805.12468.pdf

Aside

Lessons from Einstein’s 1915 discovery of general relativity

Lee Smolin
There is a myth that Einstein’s discovery of general relativity was due to his following beautiful mathematics to discover new insights about nature. I argue that this is an incorrect reading of the history and that what Einstein did was to follow physical insights which arose from asking that the story we tell of how nature works be coherent.
Contents
1 The lessons of general relativity
2 Following Einstein’s path
3 Going beyond the standard model: which legacy to follow?
4 The search for new principles
5 Einstein’s unique approach to physics
…Read more at http://arxiv.org/pdf/1512.07551v1.pdf