Could graphene be the new silicon?

A 3D model of graphene's chicken wire structure. Photograph: nobeastsofierce/Alamy

It started with a few experiments with Scotch tape and a pencil. Then graphene, stronger than steel, one atom thick and a super-conductor, was born, a wonder material that could be as revolutionary as silicon, say its Nobel prize-winning creators. Now with £50m from the UK government, they’re out to prove it.
Somehow it seems appropriate that the government might be basing some of its hopes for the economy’s recovery on a substance that is one atom thick. The substance in question – graphene – 200 times as strong as steel, seems to some designed to carry the weight of almost anything – but George Osborne’s Plan A? That would indeed make it a miracle material.

Nevertheless the chancellor made a detour from the Tory conference in Blackpool in September to visit Manchester University, graphene’s spiritual home, and to announce a £50m investment. Graphene is claimed by some as an innovation that will prove as revolutionary as the silicon chip, or even plastics, both of which it may supersede. A poster campaign around Manchester currently reminds you that the industrial revolution was born in the city at the beginning of the 19th century. Two hundred years on the challenge is to keep the “graphene revolution” in the north west, too.

Sitting in his lab at the university, Konstantin Novoselov one half of the 2010 physics Nobel prize-winning team that “discovered” graphene, runs through the superlatives of his material – uniquely strong and flexible and the best conductor of electricity yet found – with a kind of amused pride before explaining its genesis. Graphene wasn’t so much of a eureka moment as a eureka year or two, but since it was first identified the exclamation marks have kept coming. What they began with, however, was some pencil lead and a roll of Scotch tape.

In 2004 Novoselov, a 37-year old from the Ural mountains with a deadpan wit, was a post-doctorate researcher in conductivity in a department run by fellow Russian émigré Andre Geim. “It was always the style in our lab to have side projects going on,” he recalls. “We were working on issues of microscopic electromagnetism during the day, but we had a few after-hours projects on the go mainly for fun.”
At the time, Andre Geim was probably best known for his “frog levitation” experiment. This showed that if you placed small amphibians between two large electromagnets they would defy gravity and swim in the air. The experiment won him an Ig-Nobel prize (awarded for the most enjoyably pointless research of the year; Geim remains the only recipient both of an Ig-Nobel and the real thing).
It was in the same spirit…………….
………………………
Read more: http://www.guardian.co.uk