CID-42: Exceptional Properties

The galaxy at the center of this image contains an X-ray source, CID-42, with exceptional properties. After combining data from several telescopes — including NASA’s Chandra X-ray Observatory — researchers think that CID-42 contains a massive black hole being ejected from its host galaxy at several million miles per hour.

The main panel is a wide-field image of CID-42 and its surroundings taken by the Canada-French-Hawaii Telescope and the Hubble Space Telescope in optical light. The galaxy is located nearly four billion light years from Earth. The outlined box on the main panel represents the more localized view of CID-42 that is shown in the three separate boxes on the right-hand side of the graphic. At the top is an image from the Chandra X-ray Observatory. The X-ray emission is concentrated in a single source, corresponding to one of the two sources seen in deep observations by Hubble, which is shown in the middle inset box. The bottom inset shows how the X-rays align with the optical data in the two insets above.

The precise location of this source was recently obtained using Chandra’s High Resolution Camera, giving an important clue in telling astronomers what is happening within this galaxy. Previous Chandra observations had detected a bright X-ray source likely caused by super-heated material around one or more supermassive black holes. However, they could not distinguish if the X-rays came from one or both of the optical sources because Chandra was not pointed directly at CID-42, giving an X-ray source that was less sharp than usual.

The new data help to clarify the situation. Researchers think that CID-42 is the byproduct of two galaxies that have collided, producing the distinctive tail seen in the upper part of the optical image inset. A simulation by co-author Laura Blecha shows more details of how this spectacular event was thought to unfold.

When this galaxy collision occurred, the supermassive black holes in the center of each galaxy also collided. The two black holes then merged to form a single black hole, that recoiled from gravitational waves produced by the collision, giving the newly merged black hole a sufficiently large kick for it to eventually escape from the galaxy. In this scenario, the source with the X-rays is the black hole being ejected from the galaxy. The other optical source is thought to be the bright star cluster that was left behind at the center of the galaxy.

With the higher resolution Chandra data a new feature was discovered in CID-42, a small extension to the lower right of the source. This could be a jet from the black hole or stars forming near it.

There are two other possible, but less likely, explanations for the optical data detected in CID-42. Both would involve the presence of a second supermassive black hole in CID-42, requiring X-ray emission from a second source to be heavily obscured.

Credits: X-ray: NASA/CXC/SAO/F.Civano et al; Optical: NASA/STScI; Optical (wide field): CFHT, NASA/STScI
Read more: www.nasa.gov

Chandra Sees Remarkable Outburst From Old Black Hole

Composite image of spiral galaxy M83. (X-ray: NASA/CXC/Curtin University/R. Soria et al., Optical: NASA/STScI/ Middlebury College/F. Winkler et al.)

An extraordinary outburst produced by a black hole in a nearby galaxy has provided direct evidence for a population of old, volatile stellar black holes. The discovery, made by astronomers using NASA’s Chandra X-ray Observatory, provides new insight into the nature of a mysterious class of black holes that can produce as much energy in X-rays as a million suns radiate at all wavelengths.

Researchers used Chandra to discover a new ultraluminous X-ray source, or ULX. These objects give off more X-rays than most binary systems, in which a companion star orbits the remains of a collapsed star. These collapsed stars form either a dense core called a neutron star or a black hole. The extra X-ray emission suggests ULXs contain black holes that might be much more massive than the ones found elsewhere in our galaxy.

The companion stars to ULXs, when identified, are usually young, massive stars, implying their black holes are also young. The latest research, however, provides direct evidence that ULXs can contain much older black holes and some sources may have been misidentified as young ones.

The intriguing new ULX is located in M83, a spiral galaxy about 15 million light years from Earth, discovered in 2010 with Chandra. Astronomers compared this data with Chandra images from 2000 and 2001, which showed the source had increased in X-ray brightness by at least 3,000 times and has since become the brightest X-ray source in M83.

The sudden brightening of the M83 ULX is one of the largest changes in X-rays ever seen for this type of object, which do not usually show dormant periods. No sign of the ULX was found in historical X-ray images made with Einstein Observatory in 1980, ROSAT in 1994, the European Space Agency’s XMM-Newton in 2003 and 2008, or NASA’s Swift observatory in 2005.

“The flaring up of this ULX took us by surprise and was a sure sign we had discovered something new about the way black holes grow,” said Roberto Soria of Curtin University in Australia, who led the new study. The dramatic jump in X-ray brightness, according to the researchers, likely occurred because of a sudden increase in the amount of material falling into the black hole.

In 2011, Soria and his colleagues used optical images from the Gemini Observatory and NASA’s Hubble Space Telescope to discover a bright blue source at the position of the X-ray source. The object had not been previously observed in a Magellan Telescope image taken in April 2009 or a Hubble image obtained in August 2009. The lack of a blue source in the earlier images indicates the black hole’s companion star is fainter, redder and has a much lower mass than most of the companions that previously have been directly linked to ULXs. The bright, blue optical emission seen in 2011 must have been caused by a dramatic accumulation of more material from the companion star.

“If the ULX only had been observed during its peak of X-ray emission in 2010, the system easily could have been mistaken for a black hole with a massive, much younger stellar companion, about 10 to 20 million years old,” said co-author William Blair of Johns Hopkins University in Baltimore.

The companion to the black hole in M83 is likely a red giant star at least 500 million years old, with a mass less than four times the sun’s. Theoretical models for the evolution of stars suggest the black hole should be almost as old as its companion.

Another ULX containing a volatile, old black hole recently was discovered in the Andromeda galaxy by Amanpreet Kaur, from Clemson University, and colleagues and published in the February 2012 issue of Astronomy and Astrophysics. Matthew Middleton and colleagues from the University of Durham reported more information in the March 2012 issue of the Monthly Notices of the Royal Astronomical Society. They used data from Chandra, XMM-Newton and HST to show the ULX is highly variable and its companion is an old, red star.

“With these two objects, it’s becoming clear there are two classes of ULX, one containing young, persistently growing black holes and the other containing old black holes that grow erratically,” said Kip Kuntz, a co-author of the new M83 paper, also of Johns Hopkins University. “We were very fortunate to observe the M83 object at just the right time to make the before and after comparison.”

A paper describing these results will appear in the May 10th issue of The Astrophysical Journal.

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.
Read more: www.nasa.gov

Dark Matter Core Defies Explanation

This composite image shows the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520, formed from a violent collision of massive galaxy clusters.
The natural-color image of the galaxies was taken with NASA’s Hubble Space Telescope and with the Canada-France-Hawaii Telescope in Hawaii. Superimposed on the image are “false-colored” maps showing the concentration of starlight, hot gas, and dark matter in the cluster. Starlight from galaxies, derived from observations by the Canada-France-Hawaii Telescope, is colored orange.
The green-tinted regions show hot gas, as detected by NASA’s Chandra X-ray Observatory.
The gas is evidence that a collision took place. The blue-colored areas pinpoint the location of most of the mass in the cluster, which is dominated by dark matter. Dark matter is an invisible substance that makes up most of the universe’s mass. The dark-matter map was derived from the Hubble Wide Field Planetary Camera 2 observations, by detecting how light from distant objects is distorted by the cluster galaxies, an effect called gravitational lensing.
The blend of blue and green in the center of the image reveals that a clump of dark matter resides near most of the hot gas, where very few galaxies are found. This finding confirms previous observations of a dark-matter core in the cluster.
The result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to dark matter, even during the shock of a collision. Abell 520 resides 2.4 billion light-years away. Credit: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University)
Read more: nasa.gov

NASA’s Chandra Finds Fastest Wind From Stellar-Mass Black Hole

Artist impression of binary system containing stellar-mass black hole IGR J17091. (NASA/CXC/M.Weiss)

Astronomers using NASA’s Chandra X-ray Observatory have clocked the fastest wind yet discovered blowing off a disk around a stellar-mass black hole. This result has important implications for understanding how this type of black hole behaves.

The record-breaking wind is moving about 20 million mph, or about 3 percent of the speed of light. This is nearly 10 times faster than had ever been seen from a stellar-mass black hole.

Stellar-mass black holes are born when extremely massive stars collapse. They typically weigh between five and 10 times the mass of the sun. The stellar-mass black hole powering this super wind is known as IGR J17091-3624, or IGR J17091 for short.

“This is like the cosmic equivalent of winds from a category five hurricane,” said Ashley King from the University of Michigan, lead author of the study published in the Feb. 20 issue of The Astrophysical Journal Letters. “We weren’t expecting to see such powerful winds from a black hole like this.”

The wind speed in IGR J17091 matches some of the fastest winds generated by supermassive black holes, objects millions or billions of times more massive.

“It’s a surprise this small black hole is able to muster the wind speeds we typically only see in the giant black holes,” said co-author Jon M. Miller, also from the University of Michigan. “In other words, this black hole is performing well above its weight class.”

Another unanticipated finding is that the wind, which comes from a disk of gas surrounding the black hole, may be carrying away more material than the black hole is capturing.

“Contrary to the popular perception of black holes pulling in all of the material that gets close, we estimate up to 95 percent of the matter in the disk around IGR J17091 is expelled by the wind,” King said.

Unlike winds from hurricanes on Earth, the wind from IGR J17091 is blowing in many different directions. This pattern also distinguishes it from a jet, where material flows in highly focused beams perpendicular to the disk, often at nearly the speed of light.

Simultaneous observations made with the National Radio Astronomy Observatory’s Expanded Very Large Array showed a radio jet from the black hole was not present when the ultra-fast wind was seen, although a radio jet is seen at other times. This agrees with observations of other stellar-mass black holes, providing further evidence the production of winds can stifle jets.

The high speed for the wind was estimated from a spectrum made by Chandra in 2011. Ions emit and absorb distinct features in spectra, which allow scientists to monitor them and their behavior. A Chandra spectrum of iron ions made two months earlier showed no evidence of the high-speed wind, meaning the wind likely turns on and off over time.

Astronomers believe that magnetic fields in the disks of black holes are responsible for producing both winds and jets. The geometry of the magnetic fields and rate at which material falls towards the black hole must influence whether jets or winds are produced.

IGR J17091 is a binary system in which a sun-like star orbits the black hole. It is found in the bulge of the Milky Way galaxy, about 28,000 light years away from Earth….
Read more: nasa.gov

The largest galaxy cluster in early universe

Composite image of the El Gordo galaxy cluster. (X-ray: NASA/CXC/Rutgers/J. Hughes et al; Optical: ESO/VLT & SOAR/Rutgers/F. Menanteau; IR: NASA/JPL/Rutgers/F. Menanteau )

An exceptional galaxy cluster, the largest seen in the distant universe, has been found using NASA’s Chandra X-ray Observatory and the National Science Foundation-funded Atacama Cosmology Telescope (ACT) in Chile.

Officially known as ACT-CL J0102-4915, the galaxy cluster has been nicknamed “El Gordo” (“the big one” or “the fat one” in Spanish) by the researchers who discovered it. The name, in a nod to the Chilean connection, describes just one of the remarkable qualities of the cluster, which is located more than seven billion light years from Earth. This large distance means that it is being observed at a young age.

“This cluster is the most massive, the hottest, and gives off the most X-rays of any known cluster at this distance or beyond,” said Felipe Menanteau of Rutgers University in New Brunswick, N.J., who led the study.

Galaxy clusters, the largest objects in the universe that are held together by gravity, form through the merger of smaller groups or sub-clusters of galaxies. Because the formation process depends on the amount of dark matter and dark energy in the universe, clusters can be used to study these mysterious phenomena.

Dark matter is material that can be inferred to exist through its gravitational effects, but does not emit and absorb detectable amounts of light. Dark energy is a hypothetical form of energy that permeates all space and exerts a negative pressure that causes the universe to expand at an ever-increasing rate.

“Gigantic galaxy clusters like this are just what we were aiming to find,” said team member Jack Hughes, also of Rutgers. “We want to see if we understand how these extreme objects form using the best models of cosmology that are currently available.”

Although a cluster of El Gordo’s size and distance is extremely rare, it is likely that its formation can be understood in terms of the standard Big Bang model of cosmology. In this model, the universe is composed predominantly of dark matter and dark energy, and began with a Big Bang about 13.7 billion years ago.

The team of scientists found El Gordo using ACT thanks to the Sunyaev-Zeldovich effect. In this phenomenon, photons in the cosmic microwave background interact with electrons in the hot gas that pervades these enormous galaxy clusters. The photons acquire energy from this interaction, which distorts the signal from the microwave background in the direction of the clusters. The magnitude of this distortion depends on the density and temperature of the hot electrons and the physical size of the cluster.

X-ray data from Chandra and the European Southern Observatory’s Very Large Telescope, an 8-meter optical observatory in Chile, show that El Gordo is, in fact, the site of two galaxy clusters running into one another at several million miles per hour. This and other characteristics make El Gordo akin to the well-known object called the Bullet Cluster, which is located almost 4 billion light years closer to Earth.

As with the Bullet Cluster, there is evidence that normal matter, mainly composed of hot, X-ray bright gas, has been wrenched apart from the dark matter in El Gordo. The hot gas in each cluster was slowed down by the collision, but the dark matter was not…..
Read more: nasa.gov

Celestial Bauble Intrigues Astronomers

 With the holiday season in full swing, a new image from an assembly of telescopes has revealed an unusual cosmic ornament. Data from NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton have been combined to discover a young pulsar in the remains of a supernova located in the Small Magellanic Cloud, or SMC. This would be the first definite time a pulsar, a spinning, ultra-dense star, has been found in a supernova remnant in the SMC, a small satellite galaxy to the Milky Way.

In this composite image, X-rays from Chandra and XMM-Newton have been colored blue and optical data from the Cerro Tololo Inter-American Observatory in Chile are colored red and green. The pulsar, known as SXP 1062, is the bright white source located on the right-hand side of the image in the middle of the diffuse blue emission inside a red shell. The diffuse X-rays and optical shell are both evidence for a supernova remnant surrounding the pulsar. The optical data also displays spectacular formations of gas and dust in a star-forming region on the left side of the image. A comparison of the Chandra image with optical images shows that the pulsar has a hot, massive companion.

Astronomers are interested in SXP 1062 because the Chandra and XMM-Newton data show that it is rotating unusually slowly — about once every 18 minutes. (In contrast, some pulsars are found to revolve multiple times per second, including most newly born pulsars.) This relatively leisurely pace of SXP 1062 makes it one of the slowest rotating X-ray pulsars in the SMC.

Two different teams of scientists have estimated that the supernova remnant around SXP 1062 is between 10,000 and 40,000 years old, as it appears in the image. This means that the pulsar is very young, from an astronomical perspective, since it was presumably formed in the same explosion that produced the supernova remnant. Therefore, assuming that it was born with rapid spin, it is a mystery why SXP 1062 has been able to slow down by so much, so quickly. Work has already begun on theoretical models to understand the evolution of this unusual object.

Credits: NASA/CXC/Univ. of Potsdam/L. Oskinova et al.
Read more: www.nasa.gov

NASA Telescopes Help Solve Ancient Supernova Mystery

This image combines data from four different space telescopes to create a multi-wavelength view of all that remains of the oldest documented example of a supernova, called RCW 86

A mystery that began nearly 2,000 years ago, when Chinese astronomers witnessed what would turn out to be an exploding star in the sky, has been solved. New infrared observations from NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer, or WISE, reveal how the first supernova ever recorded occurred and how its shattered remains ultimately spread out to great distances.

The findings show that the stellar explosion took place in a hollowed-out cavity, allowing material expelled by the star to travel much faster and farther than it would have otherwise.

“This supernova remnant got really big, really fast,” said Brian J. Williams, an astronomer at North Carolina State University in Raleigh. Williams is lead author of a new study detailing the findings online in the Astrophysical Journal. “It’s two to three times bigger than we would expect for a supernova that was witnessed exploding nearly 2,000 years ago. Now, we’ve been able to finally pinpoint the cause.”

A new image of the supernova, known as RCW 86, is online athttp://go.nasa.gov/pnv6Oy .

In 185 A.D., Chinese astronomers noted a “guest star” that mysteriously appeared in the sky and stayed for about 8 months. By the 1960s, scientists had determined that the mysterious object was the first documented supernova. Later, they pinpointed RCW 86 as a supernova remnant located about 8,000 light-years away. But a puzzle persisted. The star’s spherical remains are larger than expected. If they could be seen in the sky today in infrared light, they’d take up more space than our full moon.

The solution arrived through new infrared observations made with Spitzer and WISE, and previous data from NASA’s Chandra X-ray Observatory and the European Space Agency’s XMM-Newton Observatory.

The findings reveal that the event is a “Type Ia” supernova, created by the relatively peaceful death of a star like our sun, which then shrank into a dense star called a white dwarf. The white dwarf is thought to have later blown up in a supernova after siphoning matter, or fuel, from a nearby star.

“A white dwarf is like a smoking cinder from a burnt-out fire,” Williams said. “If you pour gasoline on it, it will explode.”

The observations also show for the first time that a white dwarf can create a cavity around it before blowing up in a Type Ia event. A cavity would explain why the remains of RCW 86 are so big. When the explosion occurred, the ejected material would have traveled unimpeded by gas and dust and spread out quickly.

Spitzer and WISE allowed the team to measure the temperature of the dust making up the RCW 86 remnant at about minus 325 degrees Fahrenheit, or minus 200 degrees Celsius. They then calculated how much gas must be present within the remnant to heat the dust to those temperatures. The results point to a low-density environment for much of the life of the remnant, essentially a cavity.

Scientists initially suspected that RCW 86 was the result of a core-collapse supernova, the most powerful type of stellar blast. They had seen hints of a cavity around the remnant, and, at that time, such cavities were only associated with core-collapse supernovae. In those events, massive stars blow material away from them before they blow up, carving out holes around them.

But other evidence argued against a core-collapse supernova. X-ray data from Chandra and XMM-Newton indicated that the object consisted of high amounts of iron, a telltale sign of a Type Ia blast. Together with the infrared observations, a picture of a Type Ia explosion into a cavity emerged.

“Modern astronomers unveiled one secret of a two-millennia-old cosmic mystery only to reveal another,” said Bill Danchi, Spitzer and WISE program scientist at NASA Headquarters in Washington. “Now, with multiple observatories extending our senses in space, we can fully appreciate the remarkable physics behind this star’s death throes, yet still be as in awe of the cosmos as the ancient astronomers.”

NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. For more information about Spitzer, visit http://spitzer.caltech.edu/ and http://www.nasa.gov/spitzer.
http://www.nasa.gov