Cassini Caught in Hyperion’s Particle Beam

This stunning false-color view of Saturn's moon Hyperion reveals crisp details across the strange, tumbling moon's surface. Differences in color could represent differences in the composition of surface materials. The view was obtained during Cassini's very close flyby on Sept. 26, 2005.

This stunning false-color view of Saturn’s moon Hyperion reveals crisp details across the strange, tumbling moon’s surface. Differences in color could represent differences in the composition of surface materials. The view was obtained during Cassini’s very close flyby on Sept. 26, 2005.

Static electricity is known to play an important role on Earth’s airless, dusty moon, but evidence of static charge building up on other objects in the solar system has been elusive until now. A new analysis of data from NASA’s Cassini mission has revealed that, during a 2005 flyby of Saturn’s moon Hyperion, the spacecraft was briefly bathed in a beam of electrons coming from the moon’s electrostatically charged surface.

The finding represents the first confirmed detection of a charged surface on an object other than our moon, although it is predicted to occur on many different bodies, including asteroids and comets. Continue reading Cassini Caught in Hyperion’s Particle Beam

Image

Cassini Watches Mysterious Feature Evolve in Titan Sea

These three images, created from Cassini Synthetic Aperture Radar (SAR) data, show the appearance and evolution of a mysterious feature in Ligeia Mare, one of the largest hydrocarbon seas on Saturn's moon Titan. Image Credit: NASA/JPL-Caltech/ASI/Cornell

These three images, created from Cassini Synthetic Aperture Radar (SAR) data, show the appearance and evolution of a mysterious feature in Ligeia Mare, one of the largest hydrocarbon seas on Saturn’s moon Titan. Image Credit: NASA/JPL-Caltech/ASI/Cornell

NASA’s Cassini spacecraft is monitoring the evolution of a mysterious feature in a large hydrocarbon sea on Saturn’s moon Titan. The feature covers an area of about 100 square miles (260 square kilometers) in Ligeia Mare, one of the largest seas on Titan. It has now been observed twice by Cassini’s radar experiment, but its appearance changed between the two apparitions….
,,, Read more at  www.nasa.gov

Cassini Spacecraft Reveals 101 Geysers and more on Icy Saturn Moon

This artist's rendering shows a cross-section of the ice shell immediately beneath one of Enceladus' geyser-active fractures, illustrating the physical and thermal structure and the processes ongoing below and at the surface. Image Credit: NASA/JPL-Caltech/Space Science Institute

This artist’s rendering shows a cross-section of the ice shell immediately beneath one of Enceladus’ geyser-active fractures, illustrating the physical and thermal structure and the processes ongoing below and at the surface.
Image Credit: NASA/JPL-Caltech/Space Science Institute

Scientists using mission data from NASA’s Cassini spacecraft have identified 101 distinct geysers erupting on Saturn’s icy moon Enceladus. Their analysis suggests it is possible for liquid water to reach from the moon’s underground sea all the way to its surface.
These findings, and clues to what powers the geyser eruptions, are presented in two articles published in the current online edition of the Astronomical Journal.
Over a period of almost seven years, Cassini’s cameras surveyed the south polar terrain of the small moon, a unique geological basin renowned for its four prominent “tiger stripe” fractures and the geysers of tiny icy particles and water vapor first sighted there nearly 10 years ago. The result of the survey is a map of 101 geysers, each erupting from one of the tiger stripe fractures, and the discovery that individual geysers are coincident with small hot spots. These relationships pointed the way to the geysers’ origin. Continue reading Cassini Spacecraft Reveals 101 Geysers and more on Icy Saturn Moon

NASA’s Cassini Spacecraft Obtains Best Views of Saturn Hexagon

This colorful view from NASA's Cassini mission is the highest-resolution view of the unique six-sided jet stream at Saturn's north pole known as "the hexagon." This movie, made from images obtained by Cassini's imaging cameras, is the first to show the hexagon in color filters, and the first movie to show a complete view from the north pole down to about 70 degrees north latitude. Image credit: NASA/JPL-Caltech/SSI/Hampton

This colorful view from NASA’s Cassini mission is the highest-resolution view of the unique six-sided jet stream at Saturn’s north pole known as “the hexagon.” This movie, made from images obtained by Cassini’s imaging cameras, is the first to show the hexagon in color filters, and the first movie to show a complete view from the north pole down to about 70 degrees north latitude. Image credit: NASA/JPL-Caltech/SSI/Hampton

NASA’s Cassini spacecraft has obtained the highest-resolution movie yet of a unique six-sided jet stream, known as the hexagon, around Saturn’s north pole.

This is the first hexagon movie of its kind, using color filters, and the first to show a complete view of the top of Saturn down to about 70 degrees latitude. Spanning about 20,000 miles (30,000 kilometers) across, the hexagon is a wavy jet stream of 200-mile-per-hour winds (about 322 kilometers per hour) with a massive, rotating storm at the center. There is no weather feature exactly, consistently like this anywhere else in the solar system.

“The hexagon is just a current of air, and weather features out there that share similarities to this are notoriously turbulent and unstable,” said Andrew Ingersoll, a Cassini imaging team member at the California Institute of Technology in Pasadena. “A hurricane on Earth typically lasts a week, but this has been here for decades — and who knows — maybe centuries.”

Weather patterns on Earth are interrupted when they encounter friction from landforms or ice caps. Scientists suspect the stability of the hexagon has something to do with the lack of solid landforms on Saturn, which is essentially a giant ball of gas.

Better views of the hexagon are available now because the sun began to illuminate its interior in late 2012. Cassini captured images of the hexagon over a 10-hour time span with high-resolution cameras, giving scientists a good look at the motion of cloud structures within.

They saw the storm around the pole, as well as small vortices rotating in the opposite direction of the hexagon. Some of the vortices are swept along with the jet stream as if on a racetrack. The largest of these vortices spans about 2,200 miles (3,500 kilometers), or about twice the size of the largest hurricane recorded on Earth.

Scientists analyzed these images in false color, a rendering method that makes it easier to distinguish differences among the types of particles suspended in the atmosphere — relatively small particles that make up haze — inside and outside the hexagon.

“Inside the hexagon, there are fewer large haze particles and a concentration of small haze particles, while outside the hexagon, the opposite is true,” said Kunio Sayanagi, a Cassini imaging team associate at Hampton University in Virginia. “The hexagonal jet stream is acting like a barrier, which results in something like Earth’s Antarctic ozone hole.”

The Antarctic ozone hole forms within a region enclosed by a jet stream with similarities to the hexagon. Wintertime conditions enable ozone-destroying chemical processes to occur, and the jet stream prevents a resupply of ozone from the outside. At Saturn, large aerosols cannot cross into the hexagonal jet stream from outside, and large aerosol particles are created when sunlight shines on the atmosphere. Only recently, with the start of Saturn’s northern spring in August 2009, did sunlight begin bathing the planet’s northern hemisphere.

“As we approach Saturn’s summer solstice in 2017, lighting conditions over its north pole will improve, and we are excited to track the changes that occur both inside and outside the hexagon boundary,” said Scott Edgington, Cassini deputy project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

A black-and-white version of the imaging camera movie and movies obtained by Cassini’s visual and infrared mapping spectrometer are also tools Cassini scientists can use to look at wind speeds and the mini-storms inside the jet stream.
Read more at http://www.jpl.nasa.gov/news/news.php?release=2013-350

Titan’s Fancy Collar

titanTitan’s polar collar — previously seen by Voyager 2 and the Hubble Space Telescope — has now been observed by the Cassini spacecraft, seen here in ultraviolet light. The collar is believed to be seasonal in nature. Researchers are still studying its cause and evolution.

This view looks toward the Saturn-facing hemisphere of Titan. North on Titan is up and rotated 32 degrees to the right. The image was taken with the Cassini spacecraft narrow-angle camera on April 13, 2013 using a spectral filter sensitive to wavelengths of ultraviolet light centered at 338 nanometers.

The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from Titan and at a Sun-Titan-spacecraft, or phase, angle of 4 degrees. Image scale is 7 miles (11 kilometers) per pixel.

Read more at http://www.ciclops.org/view/7618/Titans-Fancy-Collar?js=1 and http://www.lpl.arizona.edu/~rlorenz/hst2001.pdf

Saturn is Like an Antiques Shop, Cassini Suggests

Cassini observes three of Saturn's moons set against the darkened night side of the planet. From left, Dione, partly obscured by Saturn, then Rhea and Enceladus. This view looks toward the northern, sunlit side of the rings from just above the ringplane.

Cassini observes three of Saturn’s moons set against the darkened night side of the planet. From left, Dione, partly obscured by Saturn, then Rhea and Enceladus. This view looks toward the northern, sunlit side of the rings from just above the ringplane.

A new analysis of data from NASA’s Cassini spacecraft suggests that Saturn’s moons and rings are gently worn vintage goods from around the time of our solar system’s birth.

Though they are tinted on the surface from recent “pollution,” these bodies date back more than 4 billion years. They are from around the time that the planetary bodies in our neighborhood began to form out of the protoplanetary nebula, the cloud of material still orbiting the sun after its ignition as a star. The paper, led by Gianrico Filacchione, a Cassini participating scientist at Italy’s National Institute for Astrophysics, Rome, has just been published online by the Astrophysical Journal.
“Studying the Saturnian system helps us understand the chemical and physical evolution of our entire solar system,” said Filacchione. “We know now that understanding this evolution requires not just studying a single moon or ring, but piecing together the relationships intertwining these bodies.”

These two global images of Iapetus show the extreme brightness dichotomy on the surface of this peculiar Saturnian moon. The left-hand panel shows the moon's leading hemisphere and the right-hand panel shows the moon's trailing side.

These two global images of Iapetus show the extreme brightness dichotomy on the surface of this peculiar Saturnian moon. The left-hand panel shows the moon’s leading hemisphere and the right-hand panel shows the moon’s trailing side.

Data from Cassini’s visual and infrared mapping spectrometer (VIMS) have revealed how water ice and also colors — which are the signs of non-water and organic materials — are distributed throughout the Saturnian system. The spectrometer’s data in the visible part of the light spectrum show that coloring on the rings and moons generally is only skin-deep.
Using its infrared range, VIMS also detected abundant water ice – too much to have been deposited by comets or other recent means. So the authors deduce that the water ices must have formed around the time of the birth of the solar system, because Saturn orbits the sun beyond the so-called “snow line.” Out beyond the snow line, in the outer solar system where Saturn resides, the environment is conducive to preserving water ice, like a deep freezer. Inside the solar system’s “snow line,” the environment is much closer to the sun’s warm glow, and ices and other volatiles dissipate more easily.
The colored patina on the ring particles and moons roughly corresponds to their location in the Saturn system. For Saturn’s inner ring particles and moons, water-ice spray from the geyser moon Enceladus has a whitewashing effect.
Farther out, the scientists found that the surfaces of Saturn’s moons generally were redder the farther they orbited from Saturn. Phoebe, one of Saturn’s outer moons and an object thought to originate in the far-off Kuiper Belt, seems to be shedding reddish dust that eventually rouges the surface of nearby moons, such as Hyperion and Iapetus.
A rain of meteoroids from outside the system appears to have turned some parts of the main ring system – notably the part of the main rings known as the B ring — a subtle reddish hue. Scientists think the reddish color could be oxidized iron — rust — or polycyclic aromatic hydrocarbons, which could be progenitors of more complex organic molecules.
One of the big surprises from this research was the similar reddish coloring of the potato-shaped moon Prometheus and nearby ring particles. Other moons in the area were more whitish.

The effects of the small moon Prometheus loom large on two of Saturn's rings in this Cassini image.

The effects of the small moon Prometheus loom large on two of Saturn’s rings in this Cassini image.

“The similar reddish tint suggests that Prometheus is constructed from material in Saturn’s rings,” said co-author Bonnie Buratti, a VIMS team member based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Scientists had been wondering whether ring particles could have stuck together to form moons — since the dominant theory was that the rings basically came from satellites being broken up. The coloring gives us some solid proof that it can work the other way around, too.”
“Observing the rings and moons with Cassini gives us an amazing bird’s-eye view of the intricate processes at work in the Saturn system, and perhaps in the evolution of planetary systems as well,” said Linda Spilker, Cassini project scientist, based at JPL. “What an object looks like and how it evolves depends a lot on location, location, location.”
Read more at http://saturn.jpl.nasa.gov/news/cassinifeatures/feature20130327/

Cassini Suggests Icing on a Lake

The icebergs of Titan: Astronomers say hydrocarbon blocks could contain ‘exotic form of life’

An artist's impression of the hydrocarbon 'icebergs' on Titan scientists believe could harbour an exotic form of life

An artist’s impression of the hydrocarbon ‘icebergs’ on Titan scientists believe could harbour an exotic form of life

Researchers believe the lakes and seas could contain life due to their unique chemistry
Believe ice could be colourless, but appear reddish-brown due to Titan’s atmosphere

Saturn’s moon Titan is home to lakes of massive hydrocarbon ‘icebergs’ that could form exotic forms of life, scientists have claimed.
Nasa researchers say the new theory may also explain bizarre reading from the vast lakes and seas on the moon.
‘One of the most intriguing questions about these lakes and seas is whether they might host an exotic form of life,’ said Jonathan Lunine of Cornell University, who co-authored the study.

Titan is the only other body besides Earth in our solar system with stable bodies of liquid on its surface.
However, while our planet’s cycle of precipitation and evaporation involves water, Titan’s cycle involves hydrocarbons like ethane and methane.
Ethane and methane are organic molecules, which scientists think can be building blocks for the more complex chemistry from which life arose.

Cassini has seen a vast network of these hydrocarbon seas cover Titan’s northern hemisphere, while a more sporadic set of lakes bejewels the southern hemisphere.
Cassini scientists assumed that Titan lakes would not have floating ice, because solid methane is denser than liquid methane and would sink.

But the new model, revealed today, considers the interaction between the lakes and the atmosphere, resulting in different mixtures of compositions, pockets of nitrogen gas, and changes in temperature.
The result, scientists found, is that winter ice will float in Titan’s methane-and-ethane-rich lakes and seas if the temperature is below the freezing point of methane — minus 297 degrees Fahrenheit (90.4 Kelvins).
‘We now know it’s possible to get methane-and-ethane-rich ice freezing over on Titan in thin blocks that congeal together as it gets colder — similar to what we see with Arctic sea ice at the onset of winter,’ said Jason Hofgartner, first author on the paper and a Natural Sciences and Engineering Research Council of Canada scholar at Cornell.
‘We’ll want to take these conditions into consideration if we ever decide to explore the Titan surface some day.’

Read more: http://www.dailymail.co.uk – http://www.nasa.gov/