Ad Honorem Sir Andrew J. Wiles

wilesOn May 24, 2016, Sir Andrew J. Wiles received the Abel Prize in a ceremony held in the Aula of the University of Oslo in Oslo, Norway. Wiles, who received the prize from H.R.H. Crown Prince Haakon at the award ceremony, was the fourteenth recipient of the 6 million NOK (about 750,000 USD) prize. A prize honoring the Norwegian mathematician Niels Henrik Abel was first proposed by the world-renowned mathematician Sophus Lie, also from Norway, and initially planned for the one-hundredth anniversary of Abel’s birth in 1902, but the establishment of the Abel Prize had to wait another hundred years. The Abel Prize is administered by the Norwegian Academy of Science and Letters…
Read more at http://www.ams.org/publications/journals/notices/201703/rnoti-p197.pdf

Applications of Nuclear Physics

Anna C. Hayes
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion.
The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos.
The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article onto itself, which is not the intention of the current review. Rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
read more at https://arxiv.org/ftp/arxiv/papers/1701/1701.02756.pdf

Universal Limit on Communication

Raphael Bousso
I derive a universal upper bound on the capacity of any communication channel between two distant systems. The Holevo quantity, and hence the mutual information, is at most of order EΔt/ℏ, where E the average energy of the signal, and Δt is the amount of time for which detectors operate. The bound does not depend on the size or mass of the emitting and receiving systems, nor on the nature of the signal. No restrictions on preparing and processing the signal are imposed.
As an example, I consider the encoding of information in the transverse or angular position of a signal emitted and received by systems of arbitrarily large cross-section. In the limit of a large message space, quantum effects become important even if individual signals are classical, and the bound is upheld.
Read more at https://arxiv.org/abs/1611.05821