Maxwell’s Demon Meets Nonequilibrium Quantum Thermodynamics

 Following measurements of a spin system driven out of thermal equilibrium (red), Serra and colleagues’ Maxwell's demon (blue) implements feedback control on the system’s dynamical state [2]. The control is similar to that of a parachute, smoothening the transition of the system from one state to another and rectifying the associated entropy production.
Experimental rectification of entropy production by a Maxwell’s Demon in a quantum system
P. A. Camati, J. P. S. Peterson, T. B. Batalhão, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, R. M. Serra

Maxwell’s demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this “intelligent observer” is capable of compensating entropy production (or extracting work), apparently challenging the second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwell’s demon in a quantum system. The demon is experimentally implemented as a spin-1/2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1/2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility on a non-equilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.

Read also


Entropic Measure of Time, and Gas Expansion in Vacuum

Leonid M. Martyushev, Evgenii V. Shaiapin
The study considers advantages of the introduced measure of time based on the entropy change under irreversible processes (entropy production). Using the example of non-equilibrium expansion of an ideal gas in vacuum, such a measure is introduced with the help of Boltzmann’s classic entropy. It is shown that, in the general case, this measure of time proves to be nonlinearly related to the reference measure assumed uniform by convention. The connection between this result and the results of other authors investigating measure of time in some biological and cosmological problems is noted…

Maxwell’s demon as a self-contained, information-powered refrigerator

Scientists created a nano-scale device that may facilitate the design of future computers, for example.

An autonomous Maxwell's demon. When the demon sees the electron enter the island (1.), it traps the electron with a positive charge (2.). When the electron leaves the island (3.), the demon switches back a negative charge (4.). Image: Jonne Koski.

An autonomous Maxwell’s demon. When the demon sees the electron enter the island (1.), it traps the electron with a positive charge (2.). When the electron leaves the island (3.), the demon switches back a negative charge (4.). Image: Jonne Koski.

In 1867, Scottish physicist James Clerk Maxwell challenged the second law of thermodynamics according to which entropy in a closed system must always increase. In his thought experiment, Maxwell took a closed gas container, divided it into two parts with an inner wall and provided the wall with a small trap door. By opening and closing the door, the creature – ‘demon’ – controlling it could separate slow cold and fast warm particles to their respective sides, thus creating a temperature difference in contravention of the laws of thermodynamics.

On theoretical level, the thought experiment has been an object of consideration for nearly 150 years, but testing it experimentally has been impossible until the last few years. Making use of nanotechnology, scientists from Aalto University have now succeeded in constructing an autonomous Maxwell’s demon that makes it possible to analyse the microscopic changes in thermodynamics. The research results were recently published in Physical Review Letters. The work is part of the forthcoming PhD thesis of MSc Jonne Koski at Aalto University.

‘The system we constructed is a single-electron transistor that is formed by a small metallic island connected to two leads by tunnel junctions made of superconducting materials. The demon connected to the system is also a single-electron transistor that monitors the movement of electrons in the system. When an electron tunnels to the island, the demon traps it with a positive charge. Conversely, when an electron leaves the island, the demon repels it with a negative charge and forces it to move uphill contrary to its potential, which lowers the temperature of the system,’ explains Professor Jukka Pekola.

What makes the demon autonomous or self-contained is that it performs the measurement and feedback operation without outside help. Changes in temperature are indicative of correlation between the demon and the system, or, in simple terms, of how much the demon ‘knows’ about the system. According to Pekola, the research would not have been possible without the Low Temperature Laboratory conditions.

‘We work at extremely low temperatures, so the system is so well isolated that it is possible to register extremely small temperature changes,’ he says.

‘An electronic demon also enables a very large number of repetitions of the measurement and feedback operation in a very short time, whereas those who, elsewhere in the world, used molecules to construct their demons had to contend with not more than a few hundred repetitions.’

The work of the team led by Pekola remains, for the time being, basic research, but in the future, the results obtained may, among other things, pave the way towards reversible computing.

‘As we work with superconducting circuits, it is also possible for us to create qubits of quantum computers. Next, we would like to examine these same phenomena on the quantum level,’ Pekola reveals.

J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissilä and J. P. Pekola: On-chip Maxwell’s demon as an information-powered refrigerator.

The abstract of the article can be read at

Check also Sebastian Deffner’s Viewpoint: Exorcising Maxwell’s Demon at


See also, how Maxwell’s demon converts information to energy with the help of nanotechnology.


Energy Flows in Low-Entropy Complex Systems

cosmic evolutionEric J. Chaisson
Nature’s many complex systems–physical, biological, and cultural–are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence–relating neither entropy nor information, rather energy–suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density–the rate of energy flow per unit mass–can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy tend to survive and those that cannot are non-randomly eliminated.
….


An Exploration of the Limits of the Maxwell-Boltzmann Distribution

The probability distribution of speeds is given in terms of the dimensionless variable x = v/vp, where vp is the most probable speed.

The probability distribution of speeds is given in terms of the dimensionless variable x = v/vp, where vp is the most probable speed.

Yi-Chi Yvette Wu, L. H. Ford
Selected aspects of the Maxwell-Boltzmann for molecular speeds are discussed, with special attention to physical effects of the low speed and high speed limits. We use simple approaches to study several topics which could be included in introductory courses, but are usually only discussed in more advanced or specialized courses…
…

Physicists create SQUID-like Bose–Einstein condensate

Illustration of how the BEC torus is cut by a green laser. The laser is rotated about the axis of the torus such that the cut moves through the torus. (Courtesy: K C Wright et al. 2013 Phys. Rev. Lett.)

Illustration of how the BEC torus is cut by a green laser. The laser is rotated about the axis of the torus such that the cut moves through the torus.

K. C. Wright, R. B. Blakestad, C. J. Lobb‡, W. D. Phillips, and G. K. Campbell
We have observed well-defined phase slips between quantized persistent current states around a toroidal atomic (23Na) Bose-Einstein condensate. These phase slips are induced by a weak link (a localized region of reduced superfluid density) rotated slowly around the ring. This is analogous to the behavior of a superconducting loop with a weak link in the presence of an external magnetic field. When the weak link is rotated more rapidly, well-defined phase slips no longer occur, and vortices enter into the bulk of the condensate. A noteworthy feature of this system is the ability to dynamically vary the current-phase relation of the weak link, a feature which is difficult to implement in superconducting or superfluid helium circuits.
Read more: and