Meals Ready to Eat: Expedition 44 Crew Members Sample Leafy Greens Grown on Space Station

Astronauts on the International Space Station are ready to sample their harvest of a crop of "Outredgeous" red romaine lettuce from the Veggie plant growth system that tests hardware for growing vegetables and other plants in space. Credits: NASA

Astronauts on the International Space Station are ready to sample their harvest of a crop of “Outredgeous” red romaine lettuce from the Veggie plant growth system that tests hardware for growing vegetables and other plants in space.
Credits: NASA

Fresh food grown in the microgravity environment of space officially is on the menu for the first time for NASA astronauts on the International Space Station. Expedition 44 crew members, including NASA’s one-year astronaut Scott Kelly, are ready to sample the fruits of their labor after harvesting a crop of “Outredgeous” red romaine lettuce Monday, Aug. 10, from the Veggie plant growth system on the nation’s orbiting laboratory.

The astronauts will clean the leafy greens with citric acid-based, food safe sanitizing wipes before consuming them. They will eat half of the space bounty, setting aside the other half to be packaged and frozen on the station until it can be returned to Earth for scientific analysis.

NASA’s plant experiment, called Veg-01, is being used to study the in-orbit function and performance of the plant growth facility and its rooting “pillows,” which contain the seeds. Continue reading Meals Ready to Eat: Expedition 44 Crew Members Sample Leafy Greens Grown on Space Station

Video

The Huygens experience

A new rendering of Huygens descent and touchdown created using real data recorded by the probe’s instruments as it descended to the surface of Titan, Saturn’s largest moon, on 14 January 2005.
The animation takes into account Titan’s atmospheric conditions, including the Sun and wind direction, the behaviour of the parachute (with some artistic interpretation only on the movement of the ropes after touchdown), and the dynamics of the landing itself. Even the stones immediately facing Huygens were rendered to match the photograph of the landing site returned from the probe, which is revealed at the end of the animation.
Split into four sequences, the animation first shows a wide-angle view of the descent and landing followed by two close-ups of the touchdown from different angles, and finally a simulated view from Huygens itself — the true Huygens experience.
This animation was released on the eighth anniversary of Huygen’s touchdown on Titan as a Space Science Image of the Week feature.

Animation: ESA–C. Carreau/Schröder, Karkoschka et al (2012). Image from Titan’s surface: ESA/NASA/JPL/University of Arizona

85 Years after Pluto’s Discovery, NASA’s New Horizons Spots Small Moons Orbiting Pluto

The moons Nix and Hydra are visible in a series of images taken by the New Horizons spacecraft. Image Credit: NASA/Johns Hopkins APL/Southwest Research Institute

The moons Nix and Hydra are visible in a series of images taken by the New Horizons spacecraft.
Image Credit: NASA/Johns Hopkins APL/Southwest Research Institute

Exactly 85 years after Clyde Tombaugh’s historic discovery of Pluto, the NASA spacecraft set to encounter the icy planet this summer is providing its first views of the small moons orbiting Pluto.

The moons Nix and Hydra are visible in a series of images taken by the New Horizons spacecraft from Jan. 27-Feb. 8, at distances ranging from about 125 million to 115 million miles (201 million to 186 million kilometers). The long-exposure images offer New Horizons’ best view yet of these two small moons circling Pluto which Tombaugh discovered at Lowell Observatory in Flagstaff, Arizona, on Feb. 18, 1930.

“Professor Tombaugh’s discovery of Pluto was far ahead its time, heralding the discovery of the Kuiper Belt and a new class of planet,” says Alan Stern, New Horizons principal investigator from Southwest Research Institute, Boulder, Colorado. “The New Horizons team salutes his historic accomplishment.”

Assembled into a seven-frame movie, the new images provide the spacecraft’s first extended look at Hydra (identified by a yellow diamond ) and its first-ever view of Nix (orange diamond). The right-hand image set has been specially processed to make the small moons easier to see. “It’s thrilling to watch the details of the Pluto system emerge as we close the distance to the spacecraft’s July 14 encounter,” says New Horizons science team member John Spencer, also from Southwest Research Institute. “This first good view of Nix and Hydra marks another major milestone, and a perfect way to celebrate the anniversary of Pluto’s discovery.”

nh_lorri_4x4

Assembled into a seven-frame movie, the new images provide the spacecraft’s first extended look at Hydra (identified by a yellow diamond ) and its first-ever view of Nix (orange diamond). Image Credit: NASA/Johns Hopkins APL/Southwest Research Institute

These are the first of a series of long-exposure images that will continue through early March, with the purpose of refining the team’s knowledge of the moons’ orbits. Each frame is a combination of five 10-second images, taken with New Horizons’ Long-Range Reconnaissance Imager (LORRI) using a special mode that combines pixels to increase sensitivity at the expense of resolution. At left, Nix and Hydra are just visible against the glare of Pluto and its large moon Charon, and the dense field of background stars. The bright and dark streak extending to the right of Pluto is an artifact of the camera electronics, resulting from the overexposure of Pluto and Charon. As can be seen in the movie, the spacecraft and camera were rotated in some of the images to change the direction of this streak, in order to prevent it from obscuring the two moons.

The right-hand images have been processed to remove most of Pluto and Charon’s glare, and most of the background stars. The processing leaves blotchy and streaky artifacts in the images, and also leaves a few other residual bright spots that are not real features, but makes Nix and Hydra much easier to see. Celestial north is inclined 28 degrees clockwise from the “up” direction in these images.

Nix and Hydra were discovered by New Horizons team members in Hubble Space Telescope images taken in 2005. Hydra, Pluto’s outermost known moon, orbits Pluto every 38 days at a distance of approximately 40,200 miles (64,700 km), while Nix orbits every 25 days at a distance of 30,260 miles (48,700 km). Each moon is probably between 25-95 miles (approximately 40- 150 kilometers) in diameter, but scientists won’t know their sizes more precisely until New Horizons obtains close-up pictures of both of them in July. Pluto’s two other small moons, Styx and Kerberos, are still smaller and too faint to be seen by New Horizons at its current range to Pluto; they will become visible in the months to come.

The Johns Hopkins University Applied Physics Laboratory manages the New Horizons mission for NASA’s Science Mission Directorate in Washington. Alan Stern, of the Southwest Research Institute (SwRI), headquartered in San Antonio, is the principal investigator and leads the mission. SwRI leads the science team, payload operations, and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. APL designed, built and operates the spacecraft.

Read more at www.nasa.gov