# Category Archives: RELATIVITY

# Gravitational waves without general relativity

**Robert C. Hilborn**

This tutorial leads the reader through the details of calculating the properties of gravitational waves from orbiting binaries, such as two orbiting black holes. Using analogies with electromagnetic radiation, the tutorial presents a calculation that produces the same dependence on the masses of the orbiting objects, the orbital frequency, and the mass separation as does the linear version of General Relativity (GR). However, the calculation yields polarization, angular distributions, and overall power results that differ from those of GR. Nevertheless, the calculation produces waveforms that are very similar to the pre-binary-merger portions of the signals observed by the Laser Interferometer Gravitational-Wave Observatory (LIGO-VIRGO) collaboration. The tutorial should be easily understandable by students who have taken a standard upper-level undergraduate course in electromagnetism.

Read more at https://arxiv.org/ftp/arxiv/papers/1710/1710.04635.pdf

# The Black Hole information problem: past, present, and future

**Donald Marolf**

We give a brief overview of the black hole information problem emphasizing fundamental issues and recent proposals for its resolution. The focus is on broad perspective and providing a guide to current literature rather than presenting full details. We concentrate on resolutions restoring naive unitarity…

Read more at https://arxiv.org/pdf/1703.02143.pdf

# Sound clocks and sonic relativity

**Scott L. Todd and Nicolas C. Menicucci**

Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions.

A natural question that arises upon consideration of this is, “do devices exist that will experience the relativity in these systems?”

We describe a thought experiment in which ‘acoustic observers’ possess devices called sound clocks that can be connected to form chains.

Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ, with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions.

Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory.

Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers…

Read more at https://arxiv.org/pdf/1612.06870v1.pdf