physics4me

physicsgg

Archive for the ‘RELATIVITY’ Category

Exploring Gravitational Lensing

leave a comment »

Einstein’s derivation of the lensing equation, solution, and amplification in AEA 62-275 (Albert Einstein Archives, The Hebrew University of Jerusalem, Israel)

Tilman Sauer, Tobias Schütz
In this article, we discuss the idea of gravitational lensing, from a systematic, historical and didactic point of view. We show how the basic lensing equation together with the concepts of geometrical optics opens a space of implications that can be explored along different dimensions. We argue that Einstein explored the idea along different pathways in this space of implication, and that these explorations are documented by different calculational manuscripts. The conceptualization of the idea of gravitational lensing as a space of exploration also shows the feasibility of discussing the idea in the classroom using some of Einstein’s manuscripts.
Read more https://arxiv.org/pdf/1905.07174.pdf

Written by physicsgg

May 29, 2019 at 9:31 pm

The black hole fifty years after: Genesis of the name

leave a comment »

Ann Ewing’s article in 1964 where the term Black Hole is published for the first time

Carlos A. R. Herdeiro, José P. S. Lemos
Black holes are extreme spacetime deformations where even light is imprisoned. There is an extensive astrophysical evidence for the real and abundant existence of these prisons of matter and light in the Universe. Mathematically, black holes are described by solutions of the field equations of the theory of general relativity, the first of which was published in 1916 by Karl Schwarzschild.
Another highly relevant solution, representing a rotating black hole, was found by Roy Kerr in 1963. It was only much after the publication of the Schwarzschild solution, however, that the term black hole was employed to describe these objects. Who invented it?
Conventional wisdom attributes the origin of the term to the prominent North American physicist John Wheeler who first adopted it in a general audience article published in 1968. This, however, is just one side of a story that begins two hundred years before in an Indian prison colloquially known as the Black Hole of Calcutta.
Robert Dicke, also a distinguished physicist and colleague of Wheeler at Princeton University, aware of the prison’s tragedy began, around 1960, to compare gravitationally completely collapsed stars to the black hole of Calcutta. The whole account thus suggests reconsidering who indeed coined the name black hole and commends acknowledging its definitive birth to a partnership between Wheeler and Dicke.
Read more at https://arxiv.org/pdf/1811.06587.pdf

Written by physicsgg

November 20, 2018 at 2:52 pm

Relativistic spring-mass system

leave a comment »

Rodrigo Andrade e Silva, Andre G. S. Landulfo, George E. A. Matsas, Daniel A. T. Vanzella

The harmonic oscillator plays a central role in physics describing the dynamics of a wide range of systems close to stable equilibrium points. The nonrelativistic one-dimensional spring-mass system is considered a prototype representative of it. It is usually assumed and galvanized in textbooks that the equation of motion of a relativistic harmonic oscillator is given by the same equation as the nonrelativistic one with the mass M at the tip multiplied by the relativistic factor 1/(1−v2/c2)1/2. Although the solution of such an equation may depict some physical systems, it does not describe, in general, one-dimensional relativistic spring-mass oscillators under the influence of elastic forces. In recognition to the importance of such a system to physics, we fill a gap in the literature and offer a full relativistic treatment for a system composed of a spring attached to an inertial wall, holding a mass M at the end.

Read more at https://arxiv.org/pdf/1810.13365.pdf

Written by physicsgg

November 4, 2018 at 7:45 am

Snellius meets Schwarzschild

leave a comment »

Refraction of brachistochrones and time-like geodesics
snellHeinz-Jürgen Schmidt
The brachistochrone problem can be solved either by variational calculus or by a skillful application of the Snellius’ law of refraction. This suggests the question whether also other variational problems can be solved by an analogue of the refraction law. In this paper we investigate the physically interesting case of free fall in General Relativity that can be formulated as a variational problem w. r. t. proper time. We state and discuss the corresponding refraction law for a special class of spacetime metrics including the Schwarzschild metric…
Read more at https://arxiv.org/pdf/1809.00355.pdf

Written by physicsgg

September 6, 2018 at 9:17 am

Posted in RELATIVITY, waves

Tagged with

What Is a Black Hole?

leave a comment »

Erik Curiel
Although black holes are objects of central importance across many fields of physics, there is no agreed upon definition for them, a fact that does not seem to be widely recognized. Physicists in different fields conceive of and reason about them in radically different, and often conflicting, ways. All those ways, however, seem sound in the relevant contexts. After examining and comparing many of the definitions used in practice, I consider the problems that the lack of a universally accepted definition leads to, and discuss whether one is in fact needed for progress in the physics of black holes. I conclude that, within reasonable bounds, the profusion of different definitions is in fact a virtue, making the investigation of black holes possible and fruitful in all the many different kinds of problems about them that physicists consider, although one must take care in trying to translate results between fields.
Read more at https://arxiv.org/pdf/1808.01507.pdf

Written by physicsgg

August 19, 2018 at 10:06 am

The Hawking temperature, the uncertainty principle and quantum black holes

with one comment

blackhole1

A static black hole. The horizon (H ) is at a distance RS from the singularity (S).

Jorge Pinochet
In 1974, Stephen Hawking theoretically discovered that black holes emit thermal radiation and have a characteristic temperature, known as the Hawking temperature. The aim of this paper is to present a simple heuristic derivation of the Hawking temperature, based on the Heisenberg uncertainty principle. The result obtained coincides exactly with Hawking’s original finding. In parallel, this work seeks to clarify the physical meaning of Hawking’s discovery. This article may be useful as pedagogical material in a high school physics course or in an introductory undergraduate physics course.
Read more at https://arxiv.org/pdf/1808.05121.pdf

Written by physicsgg

August 16, 2018 at 6:08 pm

The End of Spacetime

leave a comment »


Nima Arkani-Hamed is a theoretical physicist with broad interests in high-energy physics and cosmology. He was educated at Toronto and Berkeley, held a postdoctoral fellowship at SLAC National Accelerator Laboratory, and was a professor of physics at Berkeley and Harvard before joining the Institute for Advanced Study in 2008. He was an inaugural recipient of the Fundamental Physics Prize in 2012, and was one of six physicists featured in the documentary “Particle Fever” in 2014.

Written by physicsgg

June 25, 2018 at 10:20 pm

Gravitational Waves: A New Astronomy

leave a comment »


Luc Blanchet
Contemporary astronomy is undergoing a revolution, perhaps even more important than that which took place with the advent of radioastronomy in the 1960s, and then the opening of the sky to observations in the other electromagnetic wavelengths. The gravitational wave detectors of the LIGO/Virgo collaboration have observed since 2015 the signals emitted during the collision and merger of binary systems of massive black holes at a large astronomical distance. This major discovery opens the way to the new astronomy of gravitational waves, drastically different from the traditional astronomy based on electromagnetic waves. More recently, in 2017, the detection of gravitational waves emitted by the inspiral and merger of a binary system of neutron stars has been followed by electromagnetic signals observed by the γ and X satellites, and by optical telescopes. A harvest of discoveries has been possible thanks to the multi-messenger astronomy, which combines the information from the gravitational wave with that from electromagnetic waves. Another important aspect of the new gravitational astronomy concerns fundamental physics, with the tests of general relativity and alternative theories of gravitation, as well as the standard model of cosmology.
Read more at https://arxiv.org/pdf/1805.08563.pdf

Written by physicsgg

May 24, 2018 at 9:02 pm