Gravitational waves without general relativity

strainRobert C. Hilborn
This tutorial leads the reader through the details of calculating the properties of gravitational waves from orbiting binaries, such as two orbiting black holes. Using analogies with electromagnetic radiation, the tutorial presents a calculation that produces the same dependence on the masses of the orbiting objects, the orbital frequency, and the mass separation as does the linear version of General Relativity (GR). However, the calculation yields polarization, angular distributions, and overall power results that differ from those of GR. Nevertheless, the calculation produces waveforms that are very similar to the pre-binary-merger portions of the signals observed by the Laser Interferometer Gravitational-Wave Observatory (LIGO-VIRGO) collaboration. The tutorial should be easily understandable by students who have taken a standard upper-level undergraduate course in electromagnetism.

Read more at https://arxiv.org/ftp/arxiv/papers/1710/1710.04635.pdf

Advertisements

The Black Hole information problem: past, present, and future

Donald Marolf
We give a brief overview of the black hole information problem emphasizing fundamental issues and recent proposals for its resolution. The focus is on broad perspective and providing a guide to current literature rather than presenting full details. We concentrate on resolutions restoring naive unitarity…
Read more at https://arxiv.org/pdf/1703.02143.pdf

Sound clocks and sonic relativity

A sound clock travelling with velocity v for some time ∆tn in which time n sound pulses are emitted and returned to the clock

A sound clock travelling with velocity v for some time ∆tn in which time n sound pulses are emitted and returned to the clock

Scott L. Todd and Nicolas C. Menicucci
Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions.
A natural question that arises upon consideration of this is, “do devices exist that will experience the relativity in these systems?”
We describe a thought experiment in which ‘acoustic observers’ possess devices called sound clocks that can be connected to form chains.
Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ, with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions.
Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory.
Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers…
Read more at https://arxiv.org/pdf/1612.06870v1.pdf

Echoes from the Abyss

Evidence for Planck-scale structure at black hole horizons
Jahed Abedi, Hannah Dykaar, Niayesh Afshordi

echoes-1030x708In classical General Relativity (GR), an observer falling into an astrophysical black hole is not expected to experience anything dramatic as she crosses the event horizon. However, tentative resolutions to problems in quantum gravity, such as the cosmological constant problem, or the black hole information paradox, invoke significant departures from classicality in the vicinity of the horizon. It was recently pointed out that such near-horizon structures can lead to late-time echoes in the black hole merger gravitational wave signals that are otherwise indistinguishable from GR. We search for observational signatures of these echoes in the gravitational wave data released by advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), following the three black hole merger events GW150914, GW151226, and LVT151012. In particular, we look for repeating damped echoes with time-delays of 8MlogM (+spin corrections, in Planck units), corresponding to Planck-scale departures from GR near their respective horizons. Accounting for the “look elsewhere” effect due to uncertainty in the echo template, we find tentative evidence for Planck-scale structure near black hole horizons at 2.9σ significance level (corresponding to false detection probability of 1 in 270). Future data releases from LIGO collaboration, along with more physical echo templates, will definitively confirm (or rule out) this finding, providing possible empirical evidence for alternatives to classical black holes, such as in firewall or fuzzball paradigms.
Read more at https://arxiv.org/pdf/1612.00266v1.pdf

Read also https://briankoberlein.com/2016/12/03/echoes-from-the-abyss/