**Carina E. A. Prunkl, Christopher G. Timpson**

The comparison of geometrical properties of black holes with classical thermodynamic variables reveals surprising parallels between the laws of black hole mechanics and the laws of thermodynamics. Since Hawking’s discovery that black holes when coupled to quantum matter fields emit radiation at a temperature proportional to their surface gravity, the idea that black holes are genuine thermodynamic objects with a well-defined thermodynamic entropy has become more and more popular. Surprisingly, arguments that justify this assumption are both sparse and rarely convincing. Most of them rely on an information-theoretic interpretation of entropy, which in itself is a highly debated topic in the philosophy of physics. We discuss some of the pertinent arguments that aim at establishing the identity of black hole surface area (times a constant) and thermodynamic entropy and show why these arguments are not satisfactory. We then present a simple model of a Black Hole Carnot cycle to establish that black hole entropy is genuine thermodynamic entropy which does not require an information-theoretic interpretation.

Read more at https://arxiv.org/pdf/1903.06276.pdf

# Category Archives: History and Philosophy of Physics

# Lost in Math?

**Lost in Math? A review of ‘Lost in Math: How Beauty Leads Physics Astray’, by Sabine Hossenfelder**

**Jeremy Butterfield**

This is a review of Hossenfelder’s book, ‘Lost in Math: How Beauty Leads Physics Astray’. The book gives a breezy exposition of the present situation in fundamental physics, and raises important questions: both about the content of the physics, and the way physics research is organized. I first state my main disagreements. Then, I mostly praise the book: I concentrate on Hossenfelder’s discussion of supersymmetry, naturalness and the multiverse.

Read more at https://arxiv.org/ftp/arxiv/papers/1902/1902.03480.pdf

# After primordial inflation

**D. V. Nanopoulos, K. A. Olive, M. Srednicki**

We consider the history of the early universe in the locally supersymmetric model we have previously discussed. We pay particular attention to the requirement of converting the quanta of the field which drives primordial inflation (inflatons) to ordinary particles which can produce the cosmological baryon asymmetry without producing too many gravitinos. An inflaton mass of about 10^{13} GeV (a natural value in our model) produces a completely acceptable scenario.

Read more at https://lib-extopc.kek.jp/preprints/PDF/1983/8305/8305219.pdf

# An introduction to the classical three-body problem

**Govind S. Krishnaswami, Himalaya Senapati**

The classical three-body problem arose in an attempt to understand the effect of the Sun on the Moon’s Keplerian orbit around the Earth. It has attracted the attention of some of the best physicists and mathematicians and led to the discovery of chaos. We survey the three-body problem in its historical context and use it to introduce several ideas and techniques that have been developed to understand classical mechanical systems.

Read more at https://arxiv.org/pdf/1901.07289.pdf

# John Archibald Wheeler: A Biographical Memoir

**Kip S. Thorne**

John Archibald Wheeler was a theoretical physicist who worked on both down-to-earth projects and highly speculative ideas, and always emphasized the importance of experiment and observation, even when speculating wildly. His research and insights had large impacts on nuclear and particle physics, the design of nuclear weapons, general relativity and relativistic astrophysics, and quantum gravity and quantum information. But his greatest impacts were through the students, postdocs, and mature physicists whom he educated and inspired.

He was guided by what he called the principle of radical conservatism, inspired by Niels Bohr: base your research on well established physical laws (be conservative), but push them into the most extreme conceivable domains (be radical). He often pushed far beyond the boundaries of well understood physics, speculating in prescient ways that inspired future generations of physicists.

After completing his PhD with Karl Herzfeld at Johns Hopkins University (1933), Wheeler embarked on a postdoctoral year with Gregory Breit at NYU and another with Niels Bohr in Copenhagen. He then moved to a three-year assistant professorship at the University of North Carolina (1935-37), followed by a 40 year professorial career at Princeton University (1937-1976) and then ten years as a professor at the University of Texas, Austin (1976-1987). He returned to Princeton in retirement but remained actively and intensely engaged with physics right up to his death at age 96.

Read more at https://arxiv.org/ftp/arxiv/papers/1901/1901.06623.pdf

# Two Notions of Naturalness

**Porter Williams**

My aim in this paper is twofold: (i) to distinguish two notions of naturalness employed in BSM physics and (ii) to argue that recognizing this distinction has methodological consequences. One notion of naturalness is an “autonomy of scales” requirement: it prohibits sensitive dependence of an effective field theory’s low-energy observables on precise specification of the theory’s description of cutoff-scale physics. I will argue that considerations from the general structure of effective field theory provide justification for the role this notion of naturalness has played in BSM model construction. A second, distinct notion construes naturalness as a statistical principle requiring that the values of the parameters in an effective field theory be “likely” given some appropriately chosen measure on some appropriately circumscribed space of models. I argue that these two notions are historically and conceptually related but are motivated by distinct theoretical considerations and admit of distinct kinds of solution.

Read more at https://arxiv.org/pdf/1812.08975.pdf

# The black hole fifty years after: Genesis of the name

**Carlos A. R. Herdeiro, José P. S. Lemos**

Black holes are extreme spacetime deformations where even light is imprisoned. There is an extensive astrophysical evidence for the real and abundant existence of these prisons of matter and light in the Universe. Mathematically, black holes are described by solutions of the field equations of the theory of general relativity, the first of which was published in 1916 by Karl Schwarzschild.

Another highly relevant solution, representing a rotating black hole, was found by Roy Kerr in 1963. It was only much after the publication of the Schwarzschild solution, however, that the term black hole was employed to describe these objects. Who invented it?

Conventional wisdom attributes the origin of the term to the prominent North American physicist John Wheeler who first adopted it in a general audience article published in 1968. This, however, is just one side of a story that begins two hundred years before in an Indian prison colloquially known as the Black Hole of Calcutta.

Robert Dicke, also a distinguished physicist and colleague of Wheeler at Princeton University, aware of the prison’s tragedy began, around 1960, to compare gravitationally completely collapsed stars to the black hole of Calcutta. The whole account thus suggests reconsidering who indeed coined the name black hole and commends acknowledging its definitive birth to a partnership between Wheeler and Dicke.

Read more at https://arxiv.org/pdf/1811.06587.pdf