physics4me

physicsgg

Archive for the ‘High Energy Physics’ Category

New and surprising duality found in theoretical particle physics

leave a comment »

On the left side, we have a scattering process involving two gluons (green/yellow and blue/cyan) interacting to produce a gluon (red/magenta) and a Higgs particle (white). The more complex scattering process to the right is mirrored by the simpler one on the left, but here we have a scattering process of two gluons (green/yellow and blue/cyan) interacting to produce four gluons (red/magenta, red/yellow, blue/magenta and green/cyan). The black color symbolizes the fact that in the collision itself, many different elementary interactions can occur, and we have to sum over all possibilities. According to the Heisenberg uncertainty principle, we cannot know what possibility exactly occurred – so it’s a “black box”. Drawing: Søren J. Granat

Read more at https://nbi.ku.dk/english/news/news22/new-and-surprising-duality-found-in-theoretical–particle-physics/

Written by physicsgg

April 26, 2022 at 8:02 am

History of Solar Neutrino Observations

leave a comment »

pp chain and CNO cycle reactions

Masayuki Nakahata
The first solar neutrino experiment led by Raymond Davis Jr. showed a deficit of neutrinos relative to the solar model prediction, referred to as the “solar neutrino problem” since the 1970s. The Kamiokande experiment led by Masatoshi Koshiba successfully observed solar neutrinos, as first reported in 1989. The observed flux of solar neutrinos was almost half the prediction and confirmed the solar neutrino problem. This problem was not resolved for some time due to possible uncertainties in the solar model. In 2001, it was discovered that the solar neutrino problem is due to neutrino oscillations by comparing the Super-Kamiokande and Sudbury Neutrino Observatory results, which was the first model-independent comparison. Detailed studies of solar neutrino oscillations have since been performed, and the results of solar neutrino experiments are consistent with solar model predictions when the effect of neutrino oscillations are taken into account. In this article, the history of solar neutrino observations is reviewed with the contributions of Kamiokande and Super-Kamiokande detailed…. read more at

Written by physicsgg

February 28, 2022 at 10:35 am

Steven Weinberg and his legacy

leave a comment »

The Galileo Galilei Institute celebrates Steven Weinberg, a founding father of the theory of fundamental interactions and one of the greatest theoretical physicists of the last century. His work has been a source of inspiration and guidance for generations of physicists and is at the heart of current front-line research. This special GGI Tea Breaks’ event is dedicated to the research of Steven Weinberg, its impact and legacy in theoretical physics. The programme includes four talks, each focused on a particular broad area of research where the work of Weinberg led to breakthrough progress. His contribution will be put into historical context and its relevance for present-day research will be discussed https://www.ggi.infn.it/teaBreakSpecial.html

Written by physicsgg

January 19, 2022 at 1:01 pm

Posted in High Energy Physics

Tagged with

What does the Muon g-2 experiment tell us?

leave a comment »

The Muon g-2 experiment announced one of the most tantalizing physics measurements in over a decade. It is possible that the measurement tells us that our theoretical calculation is missing some new physical phenomena. It is also possible that a new theoretical prediction points to the possibility that measurement and prediction basically agree. In this exciting video, Fermilab’s Dr. Don Lincoln gives you an insider’s perspective.

Written by physicsgg

May 26, 2021 at 10:16 pm

Posted in High Energy Physics

Tagged with

What Can Wobbling Muons Tell Us About the Particles in our Universe?

leave a comment »

Fermilab’s Dr. Adam Lyon breaks down the first results from the Muon g-2 experiment in this special public lecture, part of the Fermilab Arts and Lecture Series.

On April 7, 2021, the Muon g-2 experiment hosted at the U.S. Department of Energy’s Fermi National Accelerator Laboratory released its long-awaited first results. The results show fundamental particles called muons behaving in a way that is not predicted by our best theoretical model of the subatomic world, the Standard Model of particle physics. The strong evidence that muons deviate from the Standard Model calculation might hint at exciting new physics. Muons act as a window into the subatomic world and could be interacting with yet undiscovered particles or forces.

In the experiment, muons (heavy cousins of electrons) race around the 150-foot circumference magnetic racetrack, wobbling as they go, like tops slowly spinning on their axes. Quantum mechanics allows for “virtual” subatomic particles to ever so briefly come in and out of existence and affect the wobble of the muons. The Fermilab experiment measures this wobbling with greater precision than ever before.

Adam Lyon is a senior scientist and associate division head at Fermilab. He specializes in computing for experimental particle physics – both traditional classical computing and, more recently, quantum computing. He joined the Fermilab Muon g-2 experiment at its founding in 2011.

Written by physicsgg

April 18, 2021 at 10:21 pm

The Anomalies Strike Back

leave a comment »

Written by physicsgg

April 16, 2021 at 8:20 am

Steven Weinberg in conversation with Andrew Strominger

leave a comment »

Steven Weinberg is a professor of physics and astronomy at the University of Texas at Austin. His research on elementary particle physics and cosmology has been honored with the Nobel Prize in Physics, the National Medal of Science, the Benjamin Franklin Medal of the American Philosophical Society, the Dannie Heinemann Prize for Mathematical Physics, and numerous other awards. He has written over 300 scientific articles, and six treatises on general relativity, quantum field theory, cosmology, and quantum mechanics. Among his books for general readers are Dreams of a Final Theory and The First Three Minutes, and two collections of published essays, Facing Up: Science and its Cultural Adversaries, and Lake Views: This World and the Universe.

Andrew Strominger is the Gwill E. York Professor of Physics at Harvard University and a founding member of the Black Hole Initiative. He is a renowned theoretical physicist who has made pathbreaking contributions to classical and quantum gravity, quantum field theory and string theory. In recognition of his accomplishments, Strominger has been awarded the prestigious 2017 Breakthrough Prize in Fundamental Physics, the 2016 Dannie Heineman Prize from the American Physical Society, and numerous other honors.

Written by physicsgg

April 6, 2021 at 11:50 am

Why is AI hard and Physics simple?

leave a comment »

We discuss why AI is hard and why physics is simple. We discuss how physical intuition and the approach of theoretical physics can be brought to bear on the field of artificial intelligence and specifically machine learning. We suggest that the underlying project of machine learning and the underlying project of physics are strongly coupled through the principle of sparsity, and we call upon theoretical physicists to work on AI as physicists. As a first step in that direction, we discuss an upcoming book on the principles of deep learning theory that attempts to realize this approach…. Read more at

Written by physicsgg

April 2, 2021 at 12:11 pm