“What’s (the) Matter?”

A Show on Elementary Particle Physics with 28 Demonstration Experiments
Herbi K. Dreiner et al
We present the screenplay of a physics show on particle physics, by the Physikshow of Bonn University. The show is addressed at non-physicists aged 14+ and communicates basic concepts of elementary particle physics including the discovery of the Higgs boson in an entertaining fashion. It is also demonstrates a successful outreach activity heavily relying on the university physics students. This paper is addressed at anybody interested in particle physics and/or show physics. This paper is also addressed at fellow physicists working in outreach, maybe the experiments and our choice of simple explanations will be helpful. Furthermore, we are very interested in related activities elsewhere, in particular also demonstration experiments relevant to particle physics, as often little of this work is published.
Our show involves 28 live demonstration experiments. These are presented in an extensive appendix, including photos and technical details. The show is set up as a quest, where 2 students from Bonn with the aid of a caretaker travel back in time to understand the fundamental nature of matter. They visit Rutherford and Geiger in Manchester around 1911, who recount their famous experiment on the nucleus and show how particle detectors work. They travel forward in time to meet Lawrence at Berkeley around 1950, teaching them about the how and why of accelerators. Next, they visit Wu at DESY, Hamburg, around 1980, who explains the strong force. They end up in the LHC tunnel at CERN, Geneva, Switzerland in 2012. Two experimentalists tell them about colliders and our heroes watch live as the Higgs boson is produced and decays. The show was presented in English at Oxford University and University College London, as well as Padua University and ICTP Trieste. It was 1st performed in German at the Deutsche Museum, Bonn (5/’14). The show has eleven speaking parts and involves in total 20 people.


The nature of polarized light using smartphones

Martín Monteiro, Cecilia Stari, Cecilia Cabeza, Arturo C. Marti

Originally an empirical law, nowadays Malus’ is seen as a key experiment to demonstrate the traversal nature of electromagnetic waves, as well as the intrinsic connection between optics and electromagnetism. More specifically, it is an operational way to characterize a linear polarized electromagnetic wave. A simple and inexpensive setup is proposed in this work, to quantitatively verify the nature of polarized light. A flat computer screen serves as a source of linear polarized light and a smartphone is used as a measuring instrument thanks to its built-in sensors. The intensity of light is measured by means of the luminosity sensor with a tiny filter attached over it. The angle between the plane of polarization of the source and the filter is measured by means of the three-axis accelerometer, that works, in this case, as an incliometer. Taken advantage of the simultaneous use of these two sensors, a complete set of measures can be obtained just in a few seconds. The experimental light intensity as a function of the angle shows an excellent agreement with standard results…
….

“Walking” along a free rotating bicycle wheel (Round and round)

Marta mouse
Julio Guemez, Manuel Fiolhais
We describe the kinematics, dynamics and also some energetic issues related to the Marta mouse motion when she walks on top of a horizontal bicycle wheel, which is free to rotate like a merry-to-go round, as presented recently by Paul Hewitt in the Figuring Physics section of this magazine….


Do students know what they know?

Exploring the accuracy of students’ self-assessments
Beth A. Lindsey and Megan L. Nagel
We have conducted an investigation into how well students in introductory science classes (both physics and chemistry) are able to predict which questions they will or will not be able to answer correctly on an upcoming assessment. An examination of the data at the level of students’ overall scores reveals results consistent with the Dunning-Kruger effect, in which low-performing students tend to overestimate their abilities, while high-performing students estimate their abilities more accurately. Similar results have been widely reported in the science education literature. Breaking results out by students’ responses to individual questions, however, reveals that students of all ability levels have difficulty distinguishing questions which they are able to answer correctly from those that they are not able to answer correctly. These results have implications for the future study and reporting of students’ metacognitive abilities.


A Pedagogical Model of Static Friction

frictionWhile dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn.
In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation….