The “Terrascope”

On the Possibility of Using the Earth as an Atmospheric Lens


Illustration of a detector of diameter W utilizing the terrascope. Two rays of different impact parameters, but the same wavelength, lens through the atmosphere and strike the detector. The ring formed by those two rays enables a calculation of the amplification. In this setup, the detector is precisely on-axis

David Kipping
Distant starlight passing through the Earth’s atmosphere is refracted by an angle of just over one degree near the surface. This focuses light onto a focal line starting at an inner (and chromatic)boundary out to infinity – offering an opportunity for pronounced lensing. It is shown here that the focal line commences at ∼85% of the Earth-Moon separation, and thus placing an orbiting detector between here and one Hill radius could exploit this refractive lens. Analytic estimates are derived for a source directly behind the Earth (i.e. on-axis) showing that starlight is lensed into a thin circular ring of thickness W H∆/R, yielding an amplification of 8H∆/W, where H∆ is the Earth’s refractive scale height, R is its geopotential radius and W is the detector diameter. These estimates are verified through numerical ray-tracing experiments from optical to 30 µm light with standard atmospheric models. The numerical experiments are extended to include extinction from both a clear atmosphere and one with clouds. It is found that a detector at one Hill radius is least affected by extinction since lensed rays travel no deeper than 13.7 km, within the statosphere and above most clouds. Including extinction, a 1 metre Hill radius “terrascope” is calculated to produce an amplification of ∼45, 000 for a lensing timescale of ∼20 hours. In practice, the amplification is likely halved in order to avoid daylight scattering i.e. 22, 500 (∆mag=10.9) for W =1 m, or equivalent to a 150 m optical/infrared telescope.


Estimating the Moon to Earth radius ratio with a smartphone, a telescope and an eclipse

Hugo Caerols, Felipe A. Asenjo
On January 20th, 2019, a total lunar eclipse was possible to be observed in Santiago, Chile. Using a smartphone attached to a telescope, photographs of the phenomenon were taken. With Earth’s shadow on those images, and using textbook geometry, a simple open-source software and analytical procedures, we were allowed to calculate the ratio between the radii of the Moon and the Earth. The results are in very good agreement with the correct value for such ratio. This shows the strength of the smartphone technology to get powerful astronomical results in a very simple way and in a very short amount of time.

Weighing the Sun with five photographs

Hugo Caerols, Felipe A. Asenjo
With only five photographs of the Sun at different dates we show that the mass of Sun can be calculated by using a telescope, a camera, and the third Kepler’s law. With the photographs we are able to calculate the distance from Sun to Earth at different dates along four months. These distances allow us to obtain the correct elliptical orbit of Earth, proving the first Kepler’s law. The analysis of the data extracted from photographs is performed by using an analitical optimization approach that allow us to find the parameters of the elliptical orbit. Also, it is shown that the five data points fit an ellipse using an geometrical scheme. The obtained parameters are in very good agreement with the ones for Earth’s orbit, allowing us to foresee the future positions of Earth along its trajectory. The parameters for the orbit are used to calculate the Sun’s mass by applying the third Kepler’s law. This method gives a result wich is in excellent agreement with the correct value for the Sun’s mass. Thus, in a span of time of four months, any student is capable to calculate the mass of the sun with only five photographs, a telescope and a camera.
Read more

Exploring Gravitational Lensing

Einstein’s derivation of the lensing equation, solution, and amplification in AEA 62-275 (Albert Einstein Archives, The Hebrew University of Jerusalem, Israel)

Tilman Sauer, Tobias Schütz
In this article, we discuss the idea of gravitational lensing, from a systematic, historical and didactic point of view. We show how the basic lensing equation together with the concepts of geometrical optics opens a space of implications that can be explored along different dimensions. We argue that Einstein explored the idea along different pathways in this space of implication, and that these explorations are documented by different calculational manuscripts. The conceptualization of the idea of gravitational lensing as a space of exploration also shows the feasibility of discussing the idea in the classroom using some of Einstein’s manuscripts.
Read more

Is The Starry Night Turbulent?

The Starry Night
Vincent van Gogh (1889)

James Beattie, Neco Kriel
Vincent van Gogh’s painting, The Starry Night, is an iconic piece of art and cultural history. The painting portrays a night sky full of stars, with eddies (spirals) both large and small. Kolmogorov1941’s description of subsonic, incompressible turbulence gives a model for turbulence that involves eddies interacting on many length scales, and so the question has been asked: is The Starry Night turbulent? To answer this question, we calculate the azimuthally averaged power spectrum of a square region (1165×1165 pixels) of night sky in The Starry Night. We find a power spectrum, P(k), where k is the wavevector, that shares the same features as supersonic turbulence. It has a power-law P(k)∝k2.1±0.3 in the scaling range, 34≤k≤80. We identify a driving scale, kD=3, dissipation scale, kν=220 and a bottleneck. This leads us to believe that van Gogh’s depiction of the starry night closely resembles the turbulence found in real molecular clouds, the birthplace of stars in the Universe.



Gravitational Waves: A New Astronomy

Luc Blanchet
Contemporary astronomy is undergoing a revolution, perhaps even more important than that which took place with the advent of radioastronomy in the 1960s, and then the opening of the sky to observations in the other electromagnetic wavelengths. The gravitational wave detectors of the LIGO/Virgo collaboration have observed since 2015 the signals emitted during the collision and merger of binary systems of massive black holes at a large astronomical distance. This major discovery opens the way to the new astronomy of gravitational waves, drastically different from the traditional astronomy based on electromagnetic waves. More recently, in 2017, the detection of gravitational waves emitted by the inspiral and merger of a binary system of neutron stars has been followed by electromagnetic signals observed by the γ and X satellites, and by optical telescopes. A harvest of discoveries has been possible thanks to the multi-messenger astronomy, which combines the information from the gravitational wave with that from electromagnetic waves. Another important aspect of the new gravitational astronomy concerns fundamental physics, with the tests of general relativity and alternative theories of gravitation, as well as the standard model of cosmology.