Snellius meets Schwarzschild

Refraction of brachistochrones and time-like geodesics
snellHeinz-Jürgen Schmidt
The brachistochrone problem can be solved either by variational calculus or by a skillful application of the Snellius’ law of refraction. This suggests the question whether also other variational problems can be solved by an analogue of the refraction law. In this paper we investigate the physically interesting case of free fall in General Relativity that can be formulated as a variational problem w. r. t. proper time. We state and discuss the corresponding refraction law for a special class of spacetime metrics including the Schwarzschild metric…

Analogy between thermal emission of nano objects and Hawking’s radiation

Karl Joulain
We analyze in this work some analogies between thermal emission of nano objects and Hawking’s radiation. We first focus on the famous expression of the black hole radiating temperature derived by Hawking in 1974 and consider the case of thermal emission of a small aperture made into a cavity (Ideal Blackbody). We show that an expression very similar to Hawking’s temperature determines a temperature below which an aperture in a cavity cannot be considered as standard blackbody radiating like T^4. Hawking’s radiation therefore appear as a radiation at a typical wavelength which is of the size of the horizon radius. In a second part, we make the analogy between the emission of particle-anti particle pairs near the black hole horizon and the scattering and coupling of thermally populated evanescent waves by a nano objects. We show here again that a temperature similar to the Hawking temperature determines the regimes where the scattering occur or where it is negligible.

Effects of exoplanetary gravity on human locomotor ability

Nikola Poljak, Dora Klindzic, Mateo Kruljac
At some point in the future, if mankind hopes to settle planets outside the Solar System, it will be crucial to determine the range of planetary conditions under which human beings could survive and function. In this article, we apply physical considerations to future exoplanetary biology to determine the limitations which gravity imposes on several systems governing the human body. Initially, we examine the ultimate limits at which the human skeleton breaks and muscles become unable to lift the body from the ground. We also produce a new model for the energetic expenditure of walking, by modelling the leg as an inverted pendulum. Both approaches conclude that, with rigorous training, humans could perform normal locomotion at gravity no higher than 4 gEarth.

What Is a Black Hole?

Erik Curiel
Although black holes are objects of central importance across many fields of physics, there is no agreed upon definition for them, a fact that does not seem to be widely recognized. Physicists in different fields conceive of and reason about them in radically different, and often conflicting, ways. All those ways, however, seem sound in the relevant contexts. After examining and comparing many of the definitions used in practice, I consider the problems that the lack of a universally accepted definition leads to, and discuss whether one is in fact needed for progress in the physics of black holes. I conclude that, within reasonable bounds, the profusion of different definitions is in fact a virtue, making the investigation of black holes possible and fruitful in all the many different kinds of problems about them that physicists consider, although one must take care in trying to translate results between fields.

Quantum treatment of Verlinde’s entropic force conjecture

A. Plastino, M. C. Rocca, G. L. Ferri
Verlinde conjectured that gravitation is an emergent entropic force. This surprising conjecture was proved in [Physica A 505 (2018) 190] within a purely classical context. Here, we appeal to a quantum environment to deal with the conjecture in the case of bosons and consider also the classical limit of quantum mechanics (QM)….

The Hawking temperature, the uncertainty principle and quantum black holes


A static black hole. The horizon (H ) is at a distance RS from the singularity (S).

Jorge Pinochet
In 1974, Stephen Hawking theoretically discovered that black holes emit thermal radiation and have a characteristic temperature, known as the Hawking temperature. The aim of this paper is to present a simple heuristic derivation of the Hawking temperature, based on the Heisenberg uncertainty principle. The result obtained coincides exactly with Hawking’s original finding. In parallel, this work seeks to clarify the physical meaning of Hawking’s discovery. This article may be useful as pedagogical material in a high school physics course or in an introductory undergraduate physics course.

The Gibbs Paradox


The Gibbs setup. In (a) the membrane MA is permeable to A, impermeable to B, whilst MB is permeable to B, impermeable to A; the pistons are allowed to expand; In (b) the gases are the same and a partition is removed. The pressures and temperatures in both chambers are the same.

Simon Saunders
The Gibbs Paradox is essentially a set of open questions as to how sameness of gases or fluids (or masses, more generally) are to be treated in thermodynamics and statistical mechanics. They have a variety of answers, some restricted to quantum theory (there is no classical solution), some to classical theory (the quantum case is different). The solution offered here applies to both in equal measure, and is based on the concept of particle indistinguishability (in the classical case, Gibbs’ notion of ‘generic phase’). Correctly understood, it is the elimination of sequence position as a labelling device, where sequences enter at the level of the tensor (or Cartesian) product of one-particle state spaces. In both cases it amounts to passing to the quotient space under permutations. ‘Distinguishability’, in the sense in which it is usually used in classical statistical mechanics, is a mathematically convenient, but physically muddled, fiction.