**Researchers at the University of Vienna study the relevance of quantum reference frames for the symmetries of the world**

Quantum features, such as quantum superposition, are only defined relative to an observer. When we look at the train from the point of view of an observer standing on the platform, the train looks in a quantum superposition of different positions. (© Christian Murzek/IQOQI-Vienna)

However, an observer sitting on the train sees the observer on the platform and the ball in a quantum superposition. (© Christian Murzek/IQOQI-Vienna)

According to one of the most fundamental principles in physics, an observer on a moving train uses the same laws to describe a ball on the platform as an observer standing on the platform – physical laws are independent on the choice of a reference frame. Reference frames such as the train and the platform are physical systems and ultimately follow quantum-mechanical rules. They can be, for example, in a quantum state of superposition of different positions at once. So, what would the description of the ball look like for an observer on such a “quantum platform”? Researchers at the University of Vienna and the Austrian Academy of Sciences proved that whether an object (in our example, the ball) shows quantum features depends on the reference frame. The physical laws, however, are still independent of it. The results are published in Nature Communications.

Read more at https://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/how-does-a-quantum-particle-see-the-world/ and https://arxiv.org/pdf/1712.07207.pdf

### Like this:

Like Loading...

*Related*