**Rodrigo Andrade e Silva, Andre G. S. Landulfo, George E. A. Matsas, Daniel A. T. Vanzella**

The harmonic oscillator plays a central role in physics describing the dynamics of a wide range of systems close to stable equilibrium points. The nonrelativistic one-dimensional spring-mass system is considered a prototype representative of it. It is usually assumed and galvanized in textbooks that the equation of motion of a relativistic harmonic oscillator is given by the same equation as the nonrelativistic one with the mass M at the tip multiplied by the relativistic factor 1/(1−v^{2}/c^{2})^{1/2}. Although the solution of such an equation may depict some physical systems, it does not describe, in general, one-dimensional relativistic spring-mass oscillators under the influence of elastic forces. In recognition to the importance of such a system to physics, we fill a gap in the literature and offer a full relativistic treatment for a system composed of a spring attached to an inertial wall, holding a mass M at the end.

Read more at https://arxiv.org/pdf/1810.13365.pdf

### Like this:

Like Loading...

*Related*