What hadron collider is required to discover or falsify natural supersymmetry?

Howard Baer, Vernon Barger, James S. Gainer, Peisi Huang, Michael Savoy, Hasan Serce, Xerxes Tata
Weak scale supersymmetry (SUSY) remains a compelling extension of the Standard Model because it stabilizes the quantum corrections to the Higgs and W, Z boson masses. In natural SUSY models these corrections are, by definition, never much larger than the corresponding masses. Natural SUSY models all have an upper limit on the gluino mass, too high to lead to observable signals even at the high luminosity LHC. However, in models with gaugino mass unification, the wino is sufficiently light that supersymmetry discovery is possible in other channels over the entire natural SUSY parameter space with no worse than 3% fine-tuning. Here, we examine the SUSY reach in more general models with and without gaugino mass unification (specifically, natural generalized mirage mediation), and show that the high energy LHC (HE-LHC), a pp collider with \sqrt{s}=33 TeV, will be able to detect the gluino signal over the entire allowed mass range. Thus, HE-LHC would either discover or conclusively falsify natural SUSY.

Read more at https://arxiv.org/pdf/1702.06588.pdf

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s