GW151226: Observation of Gravitational Waves from a 22 Solar-mass Binary Black Hole Coalescence

Figure 1. (Adapted from figure 1 of our publication). The gravitational wave event GW151226 as observed by the twin Advanced LIGO instruments: LIGO Hanford (left) and LIGO Livingston (right). The images show the data recorded by the detectors during the last second before merger as the signal varies as a function of time (in seconds) and frequency (in Hertz or the number of wave cycles per second). To be certain that a real gravitational wave has been observed, we compare the data from the detectors against a pre-defined set of models for merging binaries. This allows us to find gravitational wave signals which are buried deep in the noise from the instruments and nearly impossible to find by eye. The animation shows the detector data with and without removing the best-matching model gravitational-wave signal, making it much easier to identify. The signal can be seen sweeping up in frequency as the two black holes spiral together. This signal is much more difficult to spot by eye than the first detection GW150914!

Figure 1. (Adapted from figure 1 of our publication). The gravitational wave event GW151226 as observed by the twin Advanced LIGO instruments: LIGO Hanford (left) and LIGO Livingston (right). The images show the data recorded by the detectors during the last second before merger as the signal varies as a function of time (in seconds) and frequency (in Hertz or the number of wave cycles per second). To be certain that a real gravitational wave has been observed, we compare the data from the detectors against a pre-defined set of models for merging binaries. This allows us to find gravitational wave signals which are buried deep in the noise from the instruments and nearly impossible to find by eye. The animation shows the detector data with and without removing the best-matching model gravitational-wave signal, making it much easier to identify. The signal can be seen sweeping up in frequency as the two black holes spiral together. This signal is much more difficult to spot by eye than the first detection GW150914!

A few months after the first detection of gravitational waves from the black hole merger event GW150914, the Laser Interferometer Gravitational-Wave Observatory (LIGO) has made another observation of gravitational waves from the collision and merger of a pair of black holes. This signal, called GW151226, arrived at the LIGO detectors on 26 December 2015 at 03:38:53 UTC.

The signal, which came from a distance of around 1.4 billion light-years, was an example of a compact binary coalescence, when two extremely dense objects merge. Binary systems like this are one of many sources of gravitational waves for which the LIGO detectors are searching. Gravitational waves are ripples in space-time itself and carry energy away from such a binary system, causing the two objects to spiral towards each other as they orbit. This inspiral brings the objects closer and closer together until they merge. The gravitational waves produced by the binary stretch and squash space-time as they spread out through the universe. It is this stretching and squashing that can be detected by observatories like Advanced LIGO, and used to reveal information about the sources which created the gravitational waves.

GW151226 is the second definitive observation of a merging binary black hole system detected by the LIGO Scientific Collaboration and Virgo Collaboration. Together with GW150914, this event marks the beginning of gravitational-wave astronomy as a revolutionary new means to explore the frontiers of our Universe….

Read more at: http://www.ligo.org/science/Publication-GW151226/index.php#sthash.GM0EB4ib.dpuf>

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s