Plane Pendulum and Beyond by Phase Space Geometry

leave a comment »

Bradley Klee
By careful analysis, the small angle approximation leads to a wildly inaccurate prediction for the period of a simple plane pendulum. We make a perturbation ansatz for the phase space trajectory of a one-dimensional, anharmonic oscillator and apply conservation of energy to set undetermined functions. Iteration of the algorithm yields, to arbitrary precision, a solution to the equations of motion and the period of oscillation. Comparison with Jacobian elliptic functions leads to multidimensional applications such as the construction of approximate Seiffert spirals. Throughout we develop a quantum/classical analogy for the purpose of comparing time-independent perturbation theories.

Written by physicsgg

June 2, 2016 at 7:10 am

Posted in mechanics

Tagged with

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: