The First Sounds of Merging Black Holes

A schematic depiction of LIGO’s interferometric gravitational wave detector. Light from a laser is split in two by a beam splitter; one half travels down the vertical arm of the interferometer, the other half travels down the horizontal arm. The detector is designed so that in the absence of gravitational waves (top left) the light takes the same time to travel back and forth along the two arms and interferes destructively at the photodetector, producing no signal. As the wave passes (moving clockwise from top right) the travel times for the lasers change, and a signal appears in the photodetector. (The actual distortions are extremely small, but are exaggerated here for easier viewing.) Inset: The elongations in a ring of particles show the effects of a gravitational wave on spacetime. [Credit: APS/Alan Stonebraker]

A schematic depiction of LIGO’s interferometric gravitational wave detector. Light from a laser is split in two by a beam splitter; one half travels down the vertical arm of the interferometer, the other half travels down the horizontal arm. The detector is designed so that in the absence of gravitational waves (top left) the light takes the same time to travel back and forth along the two arms and interferes destructively at the photodetector, producing no signal. As the wave passes (moving clockwise from top right) the travel times for the lasers change, and a signal appears in the photodetector. (The actual distortions are extremely small, but are exaggerated here for easier viewing.) Inset: The elongations in a ring of particles show the effects of a gravitational wave on spacetime. [Credit: APS/Alan Stonebraker]

Emanuele Berti
Gravitational waves emitted by the merger of two black holes have been detected, setting the course for a new era of observational astrophysics.

For decades, scientists have hoped they could “listen in” on violent astrophysical events by detecting their emission of gravitational waves.
The waves, which can be described as oscillating distortions in the geometry of spacetime, were first predicted to exist by Einstein in 1916, but they have never been observed directly. Now, in an extraordinary paper, scientists report that they have detected the waves at the Laser Interferometer Gravitational-wave Observatory (LIGO)….
…read more at http://arxiv.org/pdf/1602.04476v1.pdf

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s