Redefining the ampere with the help of graphene?

Electron pumps made from graphene work 10 times faster than similar pumps made from conventional 3D materials and can be used to generate larger currents. (Courtesy: M Connolly)

Electron pumps made from graphene work 10 times faster than similar pumps made from conventional 3D materials and can be used to generate larger currents. (Courtesy: M Connolly)

The world’s first single-electron graphene pump has been built by researchers at the UK National Physical Laboratory and the Cavendish Laboratory in Cambridge. The device could be used to redefine the standard unit of current, the ampere, in terms of the electron charge – a fundamental constant of nature.
The international system of units (SI) is made up of seven base units, which are the metre, kilogram, second, kelvin, ampere, mole and candela. The ampere, volt and ohm are the three fundamental units of electricity.
Although physicists have already come up with modern ways to represent the volt and ohm (through measurements of the Josephson voltage and quantum Hall resistance, respectively), there is no equivalent for the ampere. Indeed, today, the ampere is defined as the current which, when flowing through two parallel conductors one metre apart, exerts a certain force between the conductors. Directly realizing such a macroscopic definition of current is experimentally difficult, and the accuracy of the result also depends on other base units, such as the kilogram, which drifts with time.

Enter SEPs

Ideally, a new definition of the ampere would be based on an extremely accurate source of electric current, capable of delivering one electron at a time. A single-electron pump (SEP) could be ideal in this respect because it produces a flow of individual electrons by shuttling them into a quantum dot and emitting them precisely one at a time. A good SEP also pumps the electrons quickly, so a sufficiently large current is generated.
Until recently, two types of SEP were promising contenders: tunable barrier pumps made from semiconductors, which are fast, and so-called hybrid turnstiles made from superconductors, which can be mounted in parallel to make the output current larger. Although the most accurate, a third type of pump usually made from metallic islands is too slow for making a practical current standard, but the UK researchers have now improved its performance by making it from graphene, which is a semi-metal. Graphene is a sheet of carbon just one atom thick that has a honeycomb lattice structure….
…Read more at http://physicsworld.com/cws/article/news/2013/may/28/redefining-the-ampere-with-the-help-of-graphene

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.