physics4me

physicsgg

At the Heart of a Black Hole

leave a comment »

PhysRevLett.110.211301General relativity has been successful in describing the macroscopic properties of black holes. However, at the microscopic level, it predicts that black holes have a singularity at their cores: a region where the gravitational field is infinitely strong. Within the picture of gravity presented by general relativity, such a singularity would destroy all information about the quantum states of matter falling into a black hole. Yet one of the basic tenets of quantum mechanics is that information is preserved. The loss of information in a singularity is thus paradoxical and points to a fundamental incompatibility between general relativity and quantum mechanics. A long-standing hope has been that the application of a quantum theory of gravity to the description of black holes would resolve these contradictions.

Now, writing in Physical Review Letters, Rodolfo Gambini at the University of the Republic in Uruguay and Jorge Pullin at Louisiana State University, Baton Rouge, show that the quantization of a special class of black holes—known as spherically symmetric black holes—is indeed possible within a framework for quantum gravity known as loop quantum gravity. Their analysis shows that a region of highly curved spacetime (where quantum effects of gravity can be manifest), rather than a singularity, is what makes up the core of a black hole. While this promising theory removes the singularity implied by classical general relativity, further research will be needed to establish whether these results solve the information loss paradox and if the approach may be generalized to other classes of black holes. – Abhishek Agarwal – http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.211301

Read also: Quantum gravity takes singularity out of black holes

Written by physicsgg

May 29, 2013 at 12:58 pm

Posted in QUANTUM PHYSICS, RELATIVITY

Tagged with

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: