Neutrinos, the standard model misfits

leave a comment »

For years, scientists thought that neutrinos fit perfectly into the standard model. But they don’t. By better understanding these strange, elusive particles, scientists seek to better understand the workings of all the universe, one discovery at a time.
by Joseph Piergrossi

Neutrinos are as mysterious as they are ubiquitous. One of the most abundant particles in the universe, they pass through most matter unnoticed; billions of them are passing harmlessly through your body right now. Their masses are so tiny that so far no experiment has succeeded in measuring them. They travel at nearly the speed of light—so close, in fact, that a faulty cable connection at a neutrino experiment at Italy’s Gran Sasso National Laboratory in 2011 briefly led to speculation they might be the only known particle in the universe that travels faster than light.
Physicists have spent a lot of time exploring the properties of these invisible particles. In 1962, they discovered that neutrinos come in more than one type, or flavor. By the end of the century, scientists had identified three flavors—the electron neutrino, muon neutrino and tau neutrino—and made the weird discovery that neutrinos could switch flavor through a process called oscillation. This surprising fact represents a revolution in physics—the first known particle interactions that indicate physics beyond the extremely successful Standard Model, the theoretical framework that physicists have constructed over decades to explain particles and their interactions.
Now scientists are gearing up for new neutrino studies that could lead to answers to some big questions:

If you could put neutrinos on a scale, how much would they weigh?
Are neutrinos their own antiparticles?
Are there more than three kinds of neutrinos?
Do neutrinos get their mass the same way other elementary particles do?
Why is there more matter than antimatter in the universe?

The answers to these questions not only offer a window on physics beyond the Standard Model, but may also open the door to answering questions about the universe all the way back to its origins….
Read more:

Written by physicsgg

February 12, 2013 at 8:14 pm

Posted in High Energy Physics

Tagged with

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: