How Many Neutrons and Protons Can Get Along?

Maybe 7,000

The finding could be put to use at a new facility opening in 2020 that might create new elements—that is, nuclei with more than 118 protons—in addition to new isotopes of the known elements

MORE NUKES: This illustration of the nuclear landscape shows atomic isotopes arranged by an increasing number of protons (up) and neutrons (right). The dark blue blocks represent stable isotopes, while the lighter blue blocks are unstable isotopes.

Scientists have long wondered whether there is a limit to the number of protons and neutrons that can be clustered together to form the nucleus of an atom. A new study comes closer than ever to finding the answer by estimating the total number of nucleus variations that can exist.

The periodic table of elements includes 118 known species of atoms, and each of these exists (either naturally or synthetically) in several versions with differing numbers of neutrons, giving rise to a total of about 3,000 different atomic nuclei. As technology has improved over the years, physicists have been building heavier and heavier atoms — element 117 was created only last year, and researchers are hot on the trail of 119. New projects are in the works to add and subtract neutrons to known elements to create ever more exotic variations, known as isotopes.

But where does it end?

In a paper published in tomorrow’s (June 28) issue of the journal Nature, researchers report that roughly 6,900 nuclides (variations of atomic nuclei), plus or minus 500, should be possible. [Infographic: Nature’s Tiniest Particles Dissected]

Nuclear binding

“Beyond the 7,000, we are talking about nuclides whose lifetimes can be so short that they can’t form,” said research team member Witold Nazarewicz of the University of Tennessee, the Oak Ridge National Laboratory in Tennessee and Warsaw University in Poland. “The system would decay instantly.”

Even within those 7,000, the vast majority would be unstable, lasting only a tiny fraction of a second. Of the 3,000 known nuclides, only 288 are stable.

Atoms are limited in the number of protons they can contain, because each proton is positively charged, and because “like repels like,” they want to push each other away. Even neutrons, which have no charge, are slightly repulsive to each other. A mysterious force called the strong interaction, which is about 100 times stronger than electromagnetism, is what binds protons and neutrons together in nuclei.

“The nature or the exact form of the strong force, especially in heavier nuclei, is still a subject of very intense experimental and theoretical research,” Nazarewicz told LiveScience ….
Read more: www.scientificamerican.com

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.