Two beautiful new particles

with one comment

First excited state of Λb

In beautiful agreement with the Standard Model, two new excited states (see below) of the Λb beauty particle have just been observed by the LHCb Collaboration. Similarly to protons and neutrons, Λb is composed of three quarks. In the Λb’s case, these are up, down and… beauty.

Second excited state of Λb

Although discovering new particles is increasingly looking like a routine exercise for the LHC experiments (see previous features), it is far from being an obvious performance, particularly when the mass of the particles is high. Created in the high-energy proton-proton collisions produced by the LHC, these new excited states of the Λb particle have been found to have a mass of, respectively, 5912 MeV/c2 and 5920 MeV/c2. In other words, they are over five times heavier than the proton or the neutron.

Physicists only declare a discovery when data significantly show the relevant signal. In order to do that, they often have to analyse large samples of data. To obtain its beautiful result, the LHCb Collaboration has analysed the information coming from about 60 million million (6×1013) proton-proton collisions collected during the 2011 data-taking period. In particular, since the excited states only survive for a very short time before decaying, physicists carefully studied the decay products and tracked the whole process back to the decay vertex. The analysis took scientists several months to complete but today they are able to present the discovery with very high statistical significance, namely 4.9 σ for the first excited state and 10.1 for the second one.

Although never observed before, the excited states of the Λb particle were expected to exist according to the Standard Model, the theory that tells us how quarks combine to build particles and matter. The LHCb result is therefore a new confirmation of the success of the theory itself.



Matter can be formed in different energy states. The most stable one – that is, the one that survives the longest before decaying – is the so-called “ground state”, in which particles have the lowest possible energy. States with higher energy are called “excited states”. They are still allowed by Nature but they are unstable. The higher the formation energy (i.e. the mass) the more unstable they are.

Read more about this result on the LHCb Public Webpage.

by Antonella Del Rosso

Written by physicsgg

May 16, 2012 at 12:58 pm

Posted in High Energy Physics

Tagged with

One Response

Subscribe to comments with RSS.

  1. Reblogged this on Nero´s WorldVision.


    May 18, 2012 at 8:19 pm

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: