The analogue cosmological constant in Bose-Einstein condensates….

leave a comment »

… a lesson for quantum gravity

Stefano Finazzi, Stefano Liberati, Lorenzo Sindoni
For almost a century, the cosmological constant has been a mysterious object, in relation to both its origin and its very small value. By using a Bose-Einstein condensate analogue model for gravitational dynamics, we address here the cosmological constant issue from an analogue gravity standpoint. Starting from the fundamental equations describing a system of condensed bosons, we highlight the presence of a vacuum source term for the analogue gravitational field, playing the role of a cosmological constant. In this simple system it is possible to compute from scratch the value of this constant, to compare it with other characteristic energy scales and hence address the problem of its magnitude within this framework, suggesting a different path for the solution of this longstanding puzzle. We find that, even though this constant term is related with quantum vacuum effects, it is not immediately related to the ground state energy of the condensate. On the gravity side this result suggests that the interpretation and computation of the cosmological term as a form of renormalized vacuum energy might be misleading, its origin being related to the mechanism that instead produces spacetime from its pregeometric progenitor, shedding a different light on the subject and at the same time suggesting a potentially relevant role of analogue models in the understanding of quantum gravity……
Read more:

Written by physicsgg

April 16, 2012 at 8:54 am

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: