physics4me

physicsgg

Proton Grease: An Acid Accelerated Molecular Rotor

leave a comment »


A molecular rotor was designed that rotates 7 orders of magnitude faster upon protonation. The quinoline rotor is based on a rigid N-arylimide framework that displays restricted rotation due to steric interaction between the quinoline nitrogen and imide carbonyls. At rt (23 °C), the rotor rotates slowly (t1/2 = 26 min, ΔG = 22.2 kcal/mol).

However, upon addition of 3.5 equiv of acid the rotor rotates rapidly (t1/2 = 2.0 × 10–4 s, ΔG = 12.9 kcal/mol). Mechanistic studies show that this dramatic acid catalyzed change is due to stabilization of the planar transition state by the formation of an intramolecular hydrogen bond between the protonated quinoline nitrogen (N+—H) and an imide carbonyl (O═C). The acid catalyzed acceleration is reversible and can be stopped by addition of base.

Read more: pubs.acs.org and phys.org/news

Written by physicsgg

April 12, 2012 at 8:44 pm

Posted in Chemistry

Tagged with

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: