Confinement of antihydrogen for 1000 seconds

leave a comment »

..from Antihydrogen Laser Physics Apparatus (ALPHA)

(a) A schematic view of the ALPHA trap. Radial and axial confinement of antihydrogen atoms is provided by an octupole magnet (not shown) and mirror magnets, respectively. Penning trap electrodes are held at ~9 K, and have an inner diameter of 44.5 mm. A three-layer silicon vertex detector surrounds the magnets and the cryostat. A 1 T base field is provided by an external solenoid (not shown). An antiproton beam is introduced from the right, while positrons from an accumulator are brought in from the left. (b) The magnetic field strength in the y-z plane (z is along the trap axis, with z=0 at the centre of the magnetic trap). Green dashed lines in this and other figures depict the location of the inner walls of the electrodes. (c) The axial field profile, with an effective trap length of ~270 mm. (d) The field strength in the x-y plane. (e) The field strength profile along the x-axis.

Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here we report the observation of anti-atom confinement for 1000 s, extending our earlier results by nearly four orders of magnitude….
Read more:

Written by physicsgg

May 3, 2011 at 9:52 am


Tagged with ,

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: