Aside

Quantum factorization of 44929 with only 4 qubits

Nikesh S. Dattani, Nathaniel Bryans
The largest number factored on a quantum device reported until now was 143.
That quantum computation, which used only 4 qubits, actually also factored much larger numbers such as 3599, 13081, and 44929, without the awareness of the authors of that work.
Furthermore, unlike the implementations of Shor’s algorithm performed thus far, these 4-qubit factorizations do not need to use prior knowledge of the answer. However, because they only use 4 qubits, these factorizations can also be performed trivially on classical computers. We discover a class of numbers for which the power of quantum information actually comes into play.
We then demonstrate a 3-qubit factorization of 175, which would be the first quantum factorization of a triprime.
Read more at http://arxiv.org/pdf/1411.6758v2.pdf

NASA’s Van Allen Probes Spot an Impenetrable Barrier in Space

Two donuts of seething radiation that surround Earth, called the Van Allen radiation belts, have been found to contain a nearly impenetrable barrier that prevents the fastest, most energetic electrons from reaching Earth.

A cloud of cold, charged gas around Earth, called the plasmasphere and seen here in purple, interacts with the particles in Earth's radiation belts — shown in grey— to create an impenetrable barrier that blocks the fastest electrons from moving in closer to our planet. Image Credit: NASA/Goddard

A cloud of cold, charged gas around Earth, called the plasmasphere and seen here in purple, interacts with the particles in Earth’s radiation belts — shown in grey— to create an impenetrable barrier that blocks the fastest electrons from moving in closer to our planet.
Image Credit: NASA/Goddard

The Van Allen belts are a collection of charged particles, gathered in place by Earth’s magnetic field. They can wax and wane in response to incoming energy from the sun, sometimes swelling up enough to expose satellites in low-Earth orbit to damaging radiation. The discovery of the drain that acts as a barrier within the belts was made using NASA’s Van Allen Probes, launched in August 2012 to study the region. A paper on these results appeared in the Nov. 27, 2014, issue of Nature magazine. Continue reading NASA’s Van Allen Probes Spot an Impenetrable Barrier in Space

Aside

Seeing Through Our Galaxy

WISE2012-003-A-annotated-smThere’s a problem with our view of the night sky: beautiful though it is, we’re incapable of seeing with our own eyes what the Universe is like from an outsider’s perspective. No matter where we are, we’re stuck inside our own galaxy, with all its light-blocking and obscuring properties.
But there’s a trick to seeing through it: some wavelengths of light are more transparent to our galaxy’s material than others! And when we get there — when we view it — the rewards are incomparable, including what we learn about what’s there in our own Universe…
…Find out how we see through our galaxy, and discover the whole of the Universe! (Plus don’t miss the amazing visual reward at the end!)

Aside

John Bell and the Nature of the Quantum World

Reinhold A. Bertlmann
I present my encounter with John Bell at CERN, our collaboration and joint work in particle physics.
I also will recall our quantum debates and give my personal view on Bell’s fundamental work on quantum theory, in particular, on contextuality and nonlocality of quantum physics.
Some mathematical and geometric aspects of entanglement are discussed as influence of Bell’s Theorem.
Finally, I make some historical comments on the experimental side of Bell inequalities…
..Read more at http://arxiv.org/pdf/1411.5322v1.pdf

Video

Mysteries of matter at the LHC

Two years ago, the Higgs Boson was discovered by the ATLAS and CMS experiments. But how precisely does it fill its role as the last missing piece in the Standard Model of particle physics?
The Large Hadron Collider will restart in 2015 with almost double the collision energy to test just that. But even then, this theory only accounts for 5% of the Universe, and does not include gravity.Can the LHC shed light on the origin of dark matter? Why is gravity so much weaker than the other forces? Dr Pippa Wells explains how the LHC will explore these mysteries of matter.
Pippa Wells was the Inner Detector System Project Leader on the ATLAS Experiment at CERN. ATLAS is one of two general-purpose detectors at the Large Hadron Collider (LHC). It investigates a wide range of physics, from the search for the Higgs boson to extra dimensions and particles that could make up dark matter.

Physicists suggest new way to detect dark matter

Associate professor Chris Kouvaris from the University of Southern Denmark. Credit: University of Southern Denmark

Associate professor Chris Kouvaris from the University of Southern Denmark. Credit: University of Southern Denmark

For years physicists have been looking for the universe’s elusive dark matter, but so far no one has seen any trace of it. Maybe we are looking in the wrong place? Now physicists from University of Southern Denmark propose a new technique to detect dark matter.
The universe consists of atoms and particles – and a whole lot more that still needs to be detected. We can only speculate about the existence of this unknown matter and energy. Continue reading Physicists suggest new way to detect dark matter